Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{3}{2}\end{cases}}\)
Vậy \(S=\left\{5;\frac{3}{2}\right\}\)
A B C H 9cm 12cm K I
a. Xét \(\Delta ABC\)và \(\Delta HAC\)có:
Góc C: chung (gt)
Góc HAC = Góc ABC ( cùng phụ với góc ACB)
\(\Rightarrow\Delta ABC\infty\Delta HAC\)
b.Ta có: \(\Delta ABC\infty\Delta HAC\)(cmt)
\(\Rightarrow\frac{BC}{AC}=\frac{AC}{HC}\Rightarrow AC^2=BC.HC=\left(BH+HC\right).HC=\left(9+12\right).12=252cm.\Rightarrow AC=\sqrt{252}=6\sqrt{7}\)
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
1b) Tam giác AMN vuông tại M có góc A = 60o
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2 /MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o
=> tg AMI đều => AM = AI = 1/2AN
Từ (1) và (2) bn suy ra nhé
Bài :
a) Kẻ đường chéo BD.
- Xét tam giác ABD có: MA = MB , AQ = QD
=> MQ là đường trung bình của tam giác ABD
<=> MQ // BD , MQ = \(\frac{1}{2}BD\) (1)
- Xét tam giác BCD có : BN=NC , DP=PC
=> NP là đường trung bình của tam giác BCD
<=> NP // BD , NP = \(\frac{1}{2}BD\) (2)
Từ (1) và (2) suy ra tứ giác MNPQ là hình bình hành ( Vì có một cặp cạnh đối song song và bằng nhau )
b) Giả sử \(AC\perp BD\)
Gọi giao điểm của AC và BD là I, giao điểm của AC và MQ là K. Tương tự, MN // AC, PQ // AC.
Mà góc BIK = 90độ => góc MKI = 90 độ ( MQ // BD , góc MKI và góc BIK là hai góc so le trong )
MN // AC, góc MKI = 90 độ => góc NMK = 90 độ ( cặp góc trong cùng phía )
Hình bình hành MNPQ có góc M bằng 90 độ => MNPQ là hình chữ nhật ( Dấu hiệu nhận biết )
Vậy để MNPQ là hình chữ nhật thì đường chéo AC và BD phải vuông góc với nhau.
***Hình bạn tự vẽ nha***
a, Xét tam giác ABC và tam giác BHA có :
Góc ABC chung
Góc BAC = góc BHA ( =90°)
==> Tam giác ABC đồng dạng tam giác HBA ( g.g )
==> AB/HB = BC/AB ==> AB^2 = HB. BC
đây là toán lp 9 mak
câu hỏi của cậu giống toán lớp 9 có phải là toán lowps đâu cậu bảo