K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

1. \(3x-15=2x\left(x-5\right)\)

\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{3}{2}\end{cases}}\)

Vậy \(S=\left\{5;\frac{3}{2}\right\}\)

A B C H 9cm 12cm K I

a. Xét \(\Delta ABC\)và \(\Delta HAC\)có: 

Góc C: chung (gt)

Góc HAC = Góc ABC ( cùng phụ với góc ACB)

\(\Rightarrow\Delta ABC\infty\Delta HAC\)

b.Ta có:  \(\Delta ABC\infty\Delta HAC\)(cmt)

\(\Rightarrow\frac{BC}{AC}=\frac{AC}{HC}\Rightarrow AC^2=BC.HC=\left(BH+HC\right).HC=\left(9+12\right).12=252cm.\Rightarrow AC=\sqrt{252}=6\sqrt{7}\)

17 tháng 11 2018

A B C M H K

a) + Tứ giác AHMK có 3 góc vuông

=> Tứ giác AHMK là hình chữ nhật

b) + Tứ giác AHMK là hình vuông

<=> AM là tia phân giác của góc A

Do đó hcn AHMK là hv <=> M thuộc tia phân giác của góc A

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

6 tháng 3 2018

kho the ai ma lam noi

18 tháng 12 2016

Bài :

a) Kẻ đường chéo BD.

- Xét tam giác ABD có: MA = MB , AQ = QD

=> MQ là đường trung bình của tam giác ABD

<=> MQ // BD , MQ = \(\frac{1}{2}BD\) (1)

- Xét tam giác BCD có : BN=NC , DP=PC

=> NP là đường trung bình của tam giác BCD

<=> NP // BD , NP = \(\frac{1}{2}BD\) (2)

Từ (1) và (2) suy ra tứ giác MNPQ là hình bình hành ( Vì có một cặp cạnh đối song song và bằng nhau )

b) Giả sử \(AC\perp BD\)

Gọi giao điểm của AC và BD là I, giao điểm của AC và MQ là K. Tương tự, MN // AC, PQ // AC.

Mà góc BIK = 90độ => góc MKI = 90 độ ( MQ // BD , góc MKI và góc BIK là hai góc so le trong )

MN // AC, góc MKI = 90 độ => góc NMK = 90 độ ( cặp góc trong cùng phía )

Hình bình hành MNPQ có góc M bằng 90 độ => MNPQ là hình chữ nhật ( Dấu hiệu nhận biết )

Vậy để MNPQ là hình chữ nhật thì đường chéo AC và BD phải vuông góc với nhau.

 

18 tháng 12 2016

bạn học ở đâu vậy

 

5 tháng 5 2019

***Hình bạn tự vẽ nha***

a, Xét tam giác ABC và tam giác BHA có : 

Góc ABC chung 

Góc BAC = góc BHA ( =90°)

==> Tam giác ABC đồng dạng tam giác HBA ( g.g ) 

==> AB/HB = BC/AB ==> AB^2 = HB. BC