Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(AM^2=\dfrac{2\cdot\left(AB^2+AC^2\right)-BC^2}{4}=\dfrac{2\cdot\left(48^2+14^2\right)-50^2}{4}=625\)
nên AM=25(cm)
a: Xét ΔAHB vuông tại H có
\(AB^2=AH^2+HB^2\)
nên AH=16(cm)
Xét ΔAHC vuông tại H và ΔBKC vuông tại K có
\(\widehat{C}\) chung
Do đó: ΔAHC\(\sim\)ΔBKC
Suy ra: \(\dfrac{AH}{BK}=\dfrac{HC}{KC}=\dfrac{AC}{BC}\)
=>16/BK=20/24=5/6
=>BK=19,2(cm)
Bài 2:
Giải:
Đổi \(0,6=\frac{3}{5}\)
Tổng độ dài 2 cạnh là:
32 : 2 = 16 ( cm )
Gọi độ dài 2 cạnh của hình chữ nhật là a, b
Ta có: \(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\) và a + b = 16
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{16}{8}=2\)
+) \(\frac{a}{3}=2\Rightarrow a=6\)
+) \(\frac{b}{5}=2\Rightarrow b=10\)
Vậy chiều dài 2 cạnh của hình chữ nhật là 6 cm; 10 cm
Bài 3:
Ta có: \(y=f\left(x\right)=x2-1\)
Khi \(f\left(x\right)=1\)
\(\Rightarrow1=x2-1\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
Do b là cạnh của tam giác nên b > 0
Đặt \(f\left(x\right)=b^2x^2-\left(b^2+c^2-a^2\right)x+c^2>0,\forall x\)
Theo định lý của dấu về tam thức bậc 2
\(\Rightarrow\left\{{}\begin{matrix}b^2>0\left(đúng\right)\\\Delta< 0\end{matrix}\right.\)\(\Rightarrow\Delta< 0\)
\(\Leftrightarrow\Delta=\left(b^2+c^2-a^2\right)^2-4b^2c^2< 0\)
Chứng minh rằng \(\Delta=\left(b^2+c^2-a^2\right)^2-4b^2c^2< 0\)
\(\Leftrightarrow\left(b^2+c^2-a^2\right)^2< 4b^2c^2\)
\(\Leftrightarrow b^2+c^2-a^2< 2bc\)
\(\Leftrightarrow b^2-2bc+c^2< a^2\)
\(\Leftrightarrow\left(b-c\right)^2< a^2\)
\(\Leftrightarrow b-c< a\)
\(\Leftrightarrow b< c+a\)
Theo bất đẳng thức tam giác thì \(b< c+a\)
\(\Rightarrow\)\(\Delta=\left(b^2+c^2-a^2\right)^2-4b^2c^2< 0\) ( đpcm )
Vậy \(f\left(x\right)=b^2x^2-\left(b^2+c^2-a^2\right)x+c^2>0,\forall x\)
Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)
Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0
Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)
Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)
Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)
Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)
Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH
Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM
Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)
Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)
Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)
Lần sau em đăng vào học 24 nhé!
Hướng dẫn:
Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C
A ( a; 3 - a); C ( c: -2c -1 )
Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)
=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM
=> tìm đc tọa độ B theo a và c
Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c
Lại có: AB vuông CH => Thêm 1 phương trình theo a và c
=> Tìm đc a, c => 3 đỉnh
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\left(2x+1\right)^2+\left(x^2-1\right)^2-\left(x^2+x+1\right)^2}{2\left(2x+1\right)\left(x^2-1\right)}\)
\(=\dfrac{-2x^3-x^2+2x+1}{2\left(2x+1\right)\left(x^2-1\right)}=\dfrac{-\left(2x+1\right)\left(x^2-1\right)}{2\left(2x+1\right)\left(x^2-1\right)}=-\dfrac{1}{2}\)
\(\Rightarrow A=120^0\)