Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(AC^2=AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{1}{4}BC^2\\ \Rightarrow BC^2=\left(\dfrac{AB^2+AC^2}{2}-AC^2\right).4=2\left(AB^2-AC^2\right)\)
\(2a^2+2b^2+2ab+2ac+2bc< 0\)
\(\Leftrightarrow\left(a+b+c\right)^2+a^2+b^2-c^2< 0\)
\(\Leftrightarrow a^2+b^2< c^2-\left(a+b+c\right)^2\le c^2\)
\(\Rightarrow a^2+b^2< c^2\)
Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(3=1.3=\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le\sqrt{3}\) (1)
Lại có: \(\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}\) .Cộng các bất đẳng thức theo vế được: \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow ab+bc+ac\le1\) (2)
Cộng (1) và (2) theo vế ta có điều phải chứng minh.
Áp dụng công thức tính đường trung tuyến trong tam giác ta có
AM^2=(AB^2+AC^2)/2-BC^2/4
theo giả thiết ta có: AM=AB=c; AC=b, BC=a thay vào công thức trên bạn sẽ suy ra đc đpcm