Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tam giác $AHC$ có:
$\sin C = \frac{AH}{AC}\Rightarrow AC=\frac{AH}{\sin C}=\frac{2,5}{\sin 30^0}=5$ (cm)
Xét tam giác $ABC$:
$\frac{AC}{BC}=\cos C$
$\Rightarrow BC=\frac{AC}{\cos C}=\frac{5}{\cos 30}=\frac{10}{\sqrt{3}}$ (cm)
$AB=\sqrt{BC^2-AC^2}=\sqrt{\frac{100}{3}-25}=\frac{5}{\sqrt{3}}$ (cm)
áp dụng hệ thức lượng trong tam giác vuông để tính các cạnh
tam giác ABC có: góc A = 90* đường cao AH . Áp dụng hệ thức lượng : h^=b'c' ta có
AH^2 = BH. CH =3,75 =>AH=1,93CM
THEO htl (hệ thức lượng) b^2= ab' => ab^2= bc.1,5=6 => ab=căn 6
theo định lí pytago: ac= bc^2- ab^2= 2cm
ta có sin b = ac/c =1/2=.> góc b =30*
=>góc c = 60*
A B C H 2,5
Xét tam giác ABH vuông tại H( AH là đường cao) có:
\(AH=AB.sinB\Rightarrow AB=\frac{AH}{sinB}=\frac{2,5}{sin60^o}=\frac{5\sqrt{3}}{3}\left(cm\right)\)
Xét tam giác ACH vt H (AH là đường cao) có:
\(AH=AC.sinC\Rightarrow AC=\frac{AH}{sinC}=\frac{2,5}{sin40^o}\approx3,9\left(cm\right)\)
Lại có:
+) \(\Delta ABH\) vt H => BH=AH.cot B = 2,5 . cot 60o=\(\frac{5\sqrt{3}}{6}\)(cm)
+) \(\Delta ACH\) vt H => CH=AH.cot C = 2,5 . cot 40o\(\approx3\)(cm)
=> \(BC=BH+CH\approx\frac{5\sqrt{3}}{6}+3\approx4,44\)(cm)
a) Ta có: \(BH+HC=BC\)
\(\Leftrightarrow AH\cdot\cot B+AH\cdot\cot C=BC\)
\(\Leftrightarrow AH\cdot\left(\frac{\sqrt{3}}{3}+1,3\right)=BC\)
\(\Leftrightarrow AH\cdot1,9=10\)
\(\Rightarrow AH=5,3\left(cm\right)\)
\(\Rightarrow AC=\frac{AH}{\sin C}=\frac{5,3}{0,6}=8,2\left(cm\right)\)
b) Ta có: \(S_{ABC}=\frac{AH\cdot BC}{2}=\frac{5,3\cdot10}{2}=26,5\left(cm^2\right)\)
P/s: Các kết quả chỉ tương đối
AB = BH . BC = 9.BH
mà BH = \(\dfrac{1}{2}AB\) => AB = 4,5 . AB
=> AB= 4,5
=> BH = 2,25 => HC = 6,75
Tam giác ABH vuông tại H =>AH=\(\dfrac{9\sqrt{3}}{4}\)
Tam giác AHC vuông tại H => AC=\(\dfrac{9\sqrt{3}}{2}\)
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
A B C 4 9
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
Cảm ơn nha