Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mk nghĩ bn cheps sai đề bài rùi!!! Phải là c/m: tam giác ABD = tam giác ACD chứ!!
Xét \(\Delta ABD\)và \(\Delta ACD\)có:
AB = AC (gt)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{A}\))
AD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b) Mk nghĩ bn lại sai đề bài!!! Làm sao c/m đc EF = AD??!!!! Đáng lẽ ra phải là EF = BD ms đúng chứ!!!!
Xét \(\Delta AEF\)và \(\Delta ADB\)có:
AE = AD (gt)
\(\widehat{EAF}=\widehat{DAB}\)(2 góc đối đỉnh)
AF = AB (gt)
\(\Rightarrow\Delta AEF=\Delta ADB\left(c.g.c\right)\)
=> EF = DB (2 cạnh tương ứng)
c) Ta có: AF = AB, mà AC = AB
=> AF = AC
Xét \(\Delta AHF\)và \(\Delta AHC\)có:
AF = AC (cmt)
AH là cạnh chung
HF = HC (H là trung điểm của FC)
\(\Rightarrow\Delta AHF=\Delta AHC\left(c.c.c\right)\)
\(\Rightarrow\widehat{FAH}=\widehat{CAH}\)(2 góc tương ứng)
=> AH là tia phân giác của \(\widehat{CAF}\)
d)
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: AB=AC
AF=AB
Do đó: AF=AC
c: Ta có: ΔAFC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao, AH là tia phân giác của góc CAF
d: AH\(\perp\)CF
BC\(\perp\)CF
Do đó: AH//BC
Hình bạn tự vẽ nhé
a) Xét ΔABM và ΔACM có:
AB=AC (gt)
AM là cạnh chung
BM=CN (M là trung điểm của BC)
=> ΔABM=ΔACM (c-c-c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)
=> \(\widehat{AMB}+\widehat{AMB}=180^o\)
=> \(\widehat{AMB}=90^o\)
=> AM vuông góc với BC
b) Theo câu a ta có: ΔABM=ΔACMB
=> \(\widehat{ABM}=\widehat{ACM}\)
Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)
Xét ΔABD và ΔACE có:
AB=AC (gt)
\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)
BD=CE (gt)
=> ΔABD=ΔACE (c-g-c)
=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)
Cũng theo câu a thì ΔABM=ΔACM
=> \(\widehat{BAM}=\widehat{CAM}\)
=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)
=> \(\widehat{DAM}=\widehat{EAM}\)
=> AM là tia phân giác của góc DAE