Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : AD là phân giác tam giác ABC
\(\dfrac{AB}{AC}=\dfrac{DB}{DC}=\dfrac{12}{15}=\dfrac{4}{5}\)
b, Ta có : \(\dfrac{DB}{DC}=\dfrac{4}{5}\Rightarrow\dfrac{DB}{4}=\dfrac{DC}{5}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DB}{4}=\dfrac{DC}{5}=\dfrac{DB-DC}{4-5}=\dfrac{1}{-1}\Rightarrow DB=-4;DC=-5\)
mà DB ; DC > 0
Vậy ko có giá trị của DB;DC
A B C D 4cm 6cm
amXét \(\Delta ABC\)có AD là tia phân giác của \(\widehat{A}\)
Áp dụng tính chất của đường phân giác ,ta có:
\(\frac{DB}{DC}\)= \(\frac{AB}{AC}\)=\(\frac{4}{6}\)=\(\frac{2}{3}\)
b,theo câu a ta có :
\(\frac{DB}{DC}\)=\(\frac{2}{3}\)\(\Leftrightarrow\frac{DB}{3}\)=\(\frac{2}{3}\)
\(\Leftrightarrow DB=\frac{2.3}{3}\)
\(\Leftrightarrow DB=2\)
Lời giải:
Sử dụng tính chất đường phân giác:
ABAC=BDDC=1520=34(1)ABAC=BDDC=1520=34(1)
Áp dụng định lý Pitago cho tam giác vuông ABCABC:
AB2+AC2=BC2=(BD+DC)2=352=1225(2)AB2+AC2=BC2=(BD+DC)2=352=1225(2)
Từ (1);(2)⇒AB3=AC4⇒AB29=AC216=AB2+AC29+16=122525=49(1);(2)⇒AB3=AC4⇒AB29=AC216=AB2+AC29+16=122525=49
⇒{AB2=49.9AC2=49.16⇒AB=21;AC=28⇒{AB2=49.9AC2=49.16⇒AB=21;AC=28 (cm)
A B C H D 1 2 15cm 20cm 25cm
Xét t/gABC ta thấy AD là đường p/g của BAC
=>DB/DC=AB/AC (t/c phân giác)
Mà AB=15 cm ;AC=20cm nên ta có:
DB/DC=15/20
=> ta có tỉ lệ thức sau: DB/DB+DC=15/15+20 (t/c tỉ lệ thức)
=>DB/BC=15/35=>DB=15/35.BC=15/35.25=75/7(cm).
b) Ta kẻ AH _|_ BC
=>SABD=1/2AH.BD
=>SACD=1/2AH.DC
=>SABD/SACD=1/2AH.BD/1/2AH.DC=BD/DC
Mà ta thấy DB/DC=15/20=3/4
=> t/s SABD và SACD=3/4.
P/S: Bài này mik làm rồi nên hình mũi tên chỉ điển hình AB=15cm AC..... thôi nhé :< Cậu đừng ghi vào cũng được
a, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> BC = 5 (cm)
b,
Xét Δ AHB và Δ CAB, có :
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{ABH}=\widehat{CBA}\) (góc chung)
=> Δ AHB ∾ Δ CAB (g.g)
=> \(\dfrac{HB}{AB}=\dfrac{AH}{CA}\)
=> \(\dfrac{HB}{AH}=\dfrac{AB}{CA}\)
Xét Δ AHB và Δ CHA, có :
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\dfrac{HB}{AH}=\dfrac{AB}{CA}\) (cmt)
=> Δ AHB ∾ Δ CHA (cmt)
(Tự vẽ hình)
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=3^2+4^2=25\Rightarrow BC=5\left(cm\right)\)
Do \(AD\) là phân giác nên ta có: \(\left\{{}\begin{matrix}BD+CD=BC=5\left(cm\right)\\\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BD+CD=5\\\dfrac{BD}{3}=\dfrac{CD}{4}\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\\CD=\dfrac{5}{7}.4=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
b) Xét \(\Delta AHB\) và \(\Delta CHA\) có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))
\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g)
a: Xét ΔABC có AD là đường phân giác
nên DB/DC=AB/AC=4/5