Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC có AB2+AC2=BC2( 32+42=52)
=> Tam giác ABC vuông tại A
b)Xét tam giác DBA và tam giác DBE có
AB=BE
DBA=DBE ( vì BD là phân giác của góc ABC)
Cạnh BD chung
=> \(\Delta DBA=\Delta DBE\left(c.g.c\right)\)
c) Gọi O là giao điểm của BD và AE
Có tam giác DBA=tam giác DBE ( theo câu b)
=> AD=DE
Ta có AB=BE và AD=DE hay BD là đường trung trực của AE
Vậy \(AE⊥BD\)
d) Xét tam giác DCE vuông và tam giác DFA vuông có
AD=DE
FDA=CDE ( 2 góc đối đỉnh)
=> tam giác DCE= tam giác DFA ( cạnh góc vuông- góc nhọn)
=> DF=DC
=> tam giác DCF cân tại D
Tam giác DEA có DA=DE => Nó cân tại D
Mà CDF=ADE( 2 góc đối đỉnh)
=> FCD+DFC=DAE+DEA
=>2.FCD=2.DAE
=> FCD=DAE
Mà FCD và DAE là 2 góc so le trong
=> AE//CF
a: AC=8cm
b: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
Suy ra: DK=DC
hay ΔDKC cân tại D
A) Xét ΔABD và ΔEBD có:
+) AB=BE (gt)
+) góc ABD= góc EBD (do BD là phân giác góc B)
+) BD chung
=> ΔABD = ΔEBD (c-g-c)
b)
Qua C kẻ đường thẳng vuông góc với BD tại H.
Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B
=> ΔBCF cân tại B (tính chất)
=> BC= BF (điều phải chứng minh)
c)
Xét ΔABC và ΔEBF có:
+) AB = EB (gt)
+) góc B chung
+) BC= BF (câu b)
=> ΔABC = ΔEBF (c-g-c)
d)
Từ ý a, ΔABD = ΔEBD (c-g-c)
=> góc BAD= góc BED = 90
=> DE ⊥ BC
Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D
=> D là trực tâm
=> FD ⊥ BC
=> DE trùng với FD
=> D,E,F thẳng hàng