K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

 

Đáp án C

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

 

+ Xét tam giác có:

B C 2   =   5 2   =   25 ;   A B 2   +   A C 2   =   4 2   +   3 2   =   25   ⇒   B C 2   =   A B 2   +   A C 2

⇒ ΔABC vuông tại A (Định lý Pytago đảo)

⇒ AB ⊥ AC mà A ∈ (C; CA) nên AB là tiếp tuyến của (C; CA)

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0
1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
Mọi người ơi giúp e vsssssssssssssss.........E hỏi mà hong ai chỉ T.T

2
21 tháng 3 2020

ko làm mà muốn ăn thì chỉ có ăn cứt ăn đầu buồi nhá!

21 tháng 3 2020

Bài 1:

a,

OM là đường trung bình  của tam giác BAC => OM = 1/2*BC

OM = 1/2*AB

=> AB=BC (đpcm).

b, 

Tam giác ABC đều => BC = 2*r(O)

MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.

22 tháng 5 2018

A B O C I P M K Q

a) Đường tròn (O) có đường kính AB và điểm C nằm trên cung AB => ^ACB=900 hay ^PCB=900

Xét tứ giác BCPI: ^PCB=900; ^PIB=900 => Tứ giác BCPI nội tiếp đường tròn (Tâm là trung điểm BP)

b) Xét \(\Delta\)AMB: AC\(\perp\)BM; MI\(\perp\)AB; AC cắt MI tại P => P là trực tâm của \(\Delta\)AMB

Dễ thấy: BK\(\perp\)AM => B;P;K là 3 điểm thẳng hàng (đpcm).

 c) Nhận xét: Khi BC=R thì BC=OC=OB=OA => \(\Delta\)ABC là tam giác nửa đều có ^CBA=600

=> ^ACO=300. Do AQ là tiếp tuyến của (O) nên ^ACO+^QCA=900 => ^QCA = 600 (1)

Theo t/c 2 tiếp tuyến cắt nhau => QA=QC (2)

Từ (1) và (2) => \(\Delta\)AQC là tam giác đều => AQ=AC

Dễ có: AC=\(\sqrt{3}R\)=> AQ=\(\sqrt{3}R\)

Xét \(\Delta\)MIB: ^MBI=600; ^MIB=900 => \(\Delta\)MIB là tam giác nửa đều => BI= BM/2

Để ý thấy I là trung điểm OA => BI=3/2R => BM = 2.3/2R = 3R

Dựa vào ĐL Pytagore, ta tính được: \(MI^2=9R^2-\frac{9}{4}R^2=R^2.\left(\frac{36-9}{4}\right)=\frac{R^2.27}{4}\)

\(\Rightarrow MI=\frac{\sqrt{27}.R}{2}\)

\(\Rightarrow S_{QAIM}=\frac{\left(\sqrt{3}R+\frac{\sqrt{27}R}{2}\right).\frac{R}{2}}{2}=\frac{R.\left(\sqrt{3}+\frac{3\sqrt{3}}{2}\right).\frac{R}{2}}{2}\)\(=\frac{R^2.\frac{5\sqrt{3}}{4}}{2}=\frac{5\sqrt{3}.R^2}{8}\)

Vậy \(S_{QAIM}=\frac{5\sqrt{3}.R^2}{8}\).

21 tháng 5 2021

chung minh amci noi tiep

 

16 tháng 11 2020

Câu này khó đấy = )) Làm sai chỗ nào tự sửa 

B M C E F O A O'

a) MA và MB là các tiếp tuyến của (O) ( gt )

Theo tính chất của hai tiếp tuyến cắt nhau , ta có :

MA = MB

MO là tia phân giác của góc AMB

Tam giác AMB cân tại M ( MA = MB ) mà có MO là đường phân giác nên đồng thời là đường cao

=> \(MO\perp AB\) hay góc MEA = 90o

Tương tự ta có MO' là tia phân giác của góc AMC và góc MFA = 90o

MO, MO' là tia phân giác của hai góc kề bù góc AMB và góc AMC nên góc EMF = 90o

=> Tứ giác AEMF là hình chữ nhật ( vì có ba góc vuông )

b) ME . MO = MA2 ( hệ thức lượng trong tam giác MAO vuông )

MF . MO' = MA2 ( hệ thức lượng trong tam giác MAO' vuông )

=>  ME . MO = MF . MO'

c) Đường tròn có đường kính BC có tâm M, bán kính MA . OO' vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M)

d)

Gọi I là trung điểm của OO'

- I là tâm của đường tròn có đường kính OO'

- IM là bán kính ( vì MI là trung tuyến ứng với cạnh huyền của MOO' )

- IM là đường trung bình của hình thang OBCO' nên IM // OB // O'C

=> Do đó \(IM\perp BC\)

BC vuông góc với IM tại M nên BC là tiếp tuyến của đường tròn (I)

7 tháng 12 2019

MÌNH ĐANG CẦN GẤP LẮM . MN GIẢI DÙM MÌNH ĐI  PLEASEE