Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ đường cao BH
ta có: AB^2=BH^2+AH^2, mà góc BAH=30 suy ra AH=1\2AB
xét tam giác BHC ta có: BC^2=BH^2+HC^2
=BH^2+(AC-AH)^2
=AB^2 - AH^2 + AC^2- 2AC.AH+AH^2
=AB^2 + AC^2 - 2AC.AB\2 = AB^2 + AC^2 - AB.AC(đpcm)
tích nha
A) Xét tam giác ABM và tam giác ADM có:
AB=AD (gt)
góc BAM= góc DAM (AM phân giác của góc A)
AM là cạnh huyền chung
=> tam giác ABM= tam giác ADM (c.g.c)
=> BM = DM ( 2 cạnh tương ứng )
A B C E F
Vẽ dùm bạn cái hình nè , ai có khả năng thì vô giải dùm
a) Xét tam giác vuông ABC có :
Góc ACB = \(90^o-35^o\)
Góc ACB = \(55^o\)
b) Xét tam giác ABE và tam giác DBE có
Góc BAE= góc BDE \(\left(=90^o\right)\)
AB = BD (giả thiết)
BE là cạnh chung
Do đó tam giác ABE = tam giác DBE (cạnh huyền - cạnh góc vuông)
c) Xét tam giác EKA và tam giác ECD có
góc KAE = góc CDE \(\left(=90^o\right)\)
EA = ED (tam giác ABE = tam giác DBE)
góc KEA = góc CED ( đối đỉnh )
Do đó tam giác EKA = tam giác ECD (cạnh góc vuông - góc nhọn)
\(\Rightarrow EK=EC\) (hai cạnh tương ứng)
d) Ta có:
tam giác ABE vuông nên góc AEB là góc nhọn
\(\Rightarrow\) góc BEC là góc tù
\(\Rightarrow\) CB>EB (trong tam giác tù cạnh đối diện với góc tù là cạnh lớn nhất) (1)
Ta lại có :
tam giác KAE vuông tại A nên góc KEA là góc nhọn
\(\Rightarrow\) góc KEC là góc tù
\(\Rightarrow\) CK>EK (trong tam giác tù cạnh đối diện với góc tù là cạnh lớn nhất) (2)
Từ (1) và (2) ta có
EB+EK<CB+CK (đpcm)