Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
B2 : Hình dễ bạn tử kẻ hình nhá !
a)Ta có AH là đường cao
=> Góc AHB = AHC = 90o
Xết tam giác AHB có :
BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )
=> BAH + 90o + 70o =180o
=> BAH = 180o-70o-90o
=> BAH = 20o
Xét tam giác AHC cps :
AHC + HAC + HCA = 180o
=> 90 + HAC + 30 = 180
=> HAC = 180-30-90=60o
b) Ta có AD là đường phân giác
=> ABD= CAD = 80/2 = 40o
Xét tam giác ADB có :
ABD + BDA +DAB = 180
=> 70 + BDA + 40 = 180
=> BDA = 180-40-70 = 70
Xét tam giác ADC có :
ACD + CDA + DAC = 180
=> 30 + CDA + 40 = 180
=> CDA = 180-40-30
=> CDA=110
( **** )
a) Xét \(\Delta\)ACE và \(\Delta\)AKE có :
- CÂE = KÂE ( vì AE là phân giác )
- AE : cạnh chung
- Góc ACE = góc AKE ( = 90 độ )
\(\Rightarrow\)\(\Delta\)ACE = \(\Delta\)AKE ( cạnh huyền - góc nhọn )
\(\Rightarrow\)AC = AK ( hai cạnh tương ứng ) ( đpcm )
\(\Rightarrow\)A nằm trên đường trung trực của CK ( 1 )
Ta lại có : CE = KE ( vì \(\Delta\)ACE = \(\Delta\)AKE )
\(\Rightarrow\)E nằm trên đường trung trực của CK ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)AE\(\perp\)CK ( đpcm )
tự vẽ hình-câu a bạn kia làm r thì t làm câu b tiếp nha :)
b) Tam giác BEK có: góc B + góc E + góc K =180 độ
Tam giác KEA có : góc K+góc A+góc E=180 đôk
Mà góc EKA=BKE=90 độ, góc EBK=Góc KAE=30 độ
=> Góc BEK= góc KEA
Xét tam giác BEK và tam giác AEK, ta có:
EK là cạnh chung
góc EKA=BKE=90 độ
Góc BEK= góc KEA(cmt)
Vậy tam giác BEK = tam giác AEK(g-c-g)
=> AK=BK(cặp cạnh t/ứng)
BE=AE(cặp cạnh t/ứng)
c) Áp dụng định lí pytago vào tam giác vuông CEA. ta có:
EC2+CA2=AE2=> AE2-EC2=CA2=> AE2>CA2=> AE>CA
mà AE=BE(cmt) => BE>AC
câu d t chịu >:
a) Xét tam giác DEB và tam giác DAB có:
EB = BA (gt)
góc EBD = góc DBA (BD là tia phân giác của góc ABC)
DB = BD
=> tam giác DEB = tam giác DAB (c.g.c)
=> AD = AE (2 cạnh tương ứng)
b) Vì tam giác DEB = tam giác DAB (cma)
=> góc CAB = góc DEB = 90 độ
Ta có : góc ECD + góc EDC = 90 độ
góc ABC + góc BCA = 90 độ
=> góc EDC = góc ABC (cùng phụ với góc ACB)
c) Gọi I là giao điểm của BD và AE
Xét tam giác IEB và tam giác IAB có:
BE=BA (gt)
IB chung
góc EBI = góc IBA (BD là p/g của góc ABC)
=> tam giác IEB = tam giác IAB (c.g.c)
=> góc EIB = góc AIB (2 góc tương ứng)
Mà góc EIB + góc AIB = 180 độ
=> góc EIB = góc AIB = 90 độ
=> AE \(\perp\)BD (đpcm)
Ta có : Tính chất tia phân giác
BD / DC = AB / AC
Mà AB < AC => BD / DC < 1 => BD < DC ( đpcm )