Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\) và \(\Delta ADB\) có:
\(\widehat{A}\) chung
\(\widehat{ACB}=\widehat{ABD}\) (gt)
\(\Rightarrow\Delta ABC\) đồng dạng với \(\Delta ADB\) (g-g)
\(\Rightarrow\dfrac{AB}{AD}=\dfrac{AC}{AB}\)
\(\Rightarrow AB^2=AC.AD\)
a: Xét ΔABD và ΔACB có
góc ABD=góc ACB
góc BAD chung
=>ΔABD đồng dạng với ΔACB
=>AB/AC=AD/AB
Xét ΔABD có AF là phân giác
nên FD/FB=AD/AB
Xét ΔABC có AE là phân giác
nên EB/EC=AB/AC
=>EB/EC=FD/FB
a,Xét \(\Delta\) ABD và \(\Delta\) ACB,ta có:
Góc ABD = góc ACB(gt)
Góc A-chung
=>\(\Delta\) ABD \(\sim\) \(\Delta\) ACB(g.g)(đpcm).
b,Xét \(\Delta\) ABD ,có đường phân giác AE:
=>\(\dfrac{ED}{AD}=\dfrac{EB}{AB}\) <=>\(\dfrac{ED}{EB}=\dfrac{AD}{AB}\) (1)
Ta có: \(\Delta\) ABD \(\sim\) \(\Delta\) ACB(câu a)
=>\(\dfrac{AD}{AB}=\dfrac{AB}{AC}\) (2)
Từ (1) và (2) =>\(\dfrac{ED}{EB}=\dfrac{AB}{AC}\) (đpcm).
c,-.-đùa à.
b) Xét ΔCBD có CF là đường phân giác ứng với cạnh BD(gt)
nên \(\dfrac{FD}{FB}=\dfrac{CD}{CB}\)(Tính chất tia phân giác của tam giác)(1)
Xét ΔCBA có CE là đường phân giác ứng với cạnh BA(gt)
nên \(\dfrac{EB}{EA}=\dfrac{CB}{CA}\)(Tính chất tia phân giác của tam giác)(2)
Ta có: ΔABC\(\sim\)ΔBDC(cmt)
nên \(\dfrac{CB}{CD}=\dfrac{CA}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{CD}{CB}=\dfrac{CB}{CA}\)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{FD}{FB}=\dfrac{EB}{EA}\)(Đpcm)
a) Xét ΔABC và ΔBDC có
\(\widehat{BCD}\) chung
\(\widehat{BAC}=\widehat{DBC}\)(gt)
Do đó: ΔABC∼ΔBDC(g-g)
a: Xét ΔABC và ΔBDC có
góc C chung
góc BAC=góc DBC
=>ΔABC đồng dạng với ΔBDC
b: FD/FB=CD/CB
EB/EA=CB/CA
mà CD/CB=CB/CA
nên FD/FB=EB/EA