Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
xét tam giác ABD và tam giác ACB có:
góc A chung;góc ABD=góc ACB =>tam giác ABD đồng dạng tam giác ACB(đpcm)
=>AD/AB=AB/AC =>AD=AB*AB/AC=2*2/4=1.vậy AD=1cm
ta lại có
AC=AD+DC =>DC=AC-AD=4-1=3cm.vậy DC=3cm
b)xét tm giác ABH vuông tại H và tam giác ADK vuông tại K có:
góc ABH=góc ADK( do tam giác ABC đồng dạng tam giác ABD,cmt)
=>tam giác ABH đồng dạng tam giác ADK(g-g)
=>AB/AD=AH/AK=BH/DK
mà AB/AD=2/1
=>AB/AD=AH/AK=BH/DK=2/1
mặt khác:
diện tích tam giác ABH/diện tích tam giác ADK=k2
=(2/1)2=4/1
=>diện tích tam giác ABH=4 diện tích tam giác ADK(đpcm)
(câu b mk cũng kg bit đúng kg nữa,mk làm theo suy nghĩ của mk,có j sai,b góp ý giúp mk nhé)
#muon roi ma sao con
A B C D F E G
a, Xét tam giác BEF và tam giác DEA ta có :
^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )
\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1)
Vậy tam giác BEF ~ tam giác DEA ( c.g.c )
b, Xét tam giác EGD và tam giác EAB ta có :
^GED = ^EAB ( đ.đ )
\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét ) (2)
Vậy tam giác EGD ~ tam giác EAB ( c.g.c )
\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )
c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 )
Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)
A B C D E F H 3 6
a, Xét tam giác AEB và tam giác AFC ta có
^AEB = ^AEC = 900
^A _ chung
Vậy tam giác AEB ~ tam giác AFC ( g.g )
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)
a,Xét \(\Delta\) ABD và \(\Delta\) ACB,ta có:
Góc ABD = góc ACB(gt)
Góc A-chung
=>\(\Delta\) ABD \(\sim\) \(\Delta\) ACB(g.g)(đpcm).
b,Xét \(\Delta\) ABD ,có đường phân giác AE:
=>\(\dfrac{ED}{AD}=\dfrac{EB}{AB}\) <=>\(\dfrac{ED}{EB}=\dfrac{AD}{AB}\) (1)
Ta có: \(\Delta\) ABD \(\sim\) \(\Delta\) ACB(câu a)
=>\(\dfrac{AD}{AB}=\dfrac{AB}{AC}\) (2)
Từ (1) và (2) =>\(\dfrac{ED}{EB}=\dfrac{AB}{AC}\) (đpcm).
c,-.-đùa à.
thử AEC đi