Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMB và tam giác AMC ta có:
AM chung
AB=AC (gt)
MB=MC (vì M là trung điểm của BC)
Suy ra tam giác AMB=tam giác AMC (c-c-c) (đpcm)
b) Vì tam giác AMB=tam giác AMC (cmt)
Suy ra góc BAM=góc CAM (2 góc tương ứng)
Suy ra AM là tia phân giác của góc BAC (đpcm)
c) Vì tam giác AMB=tam giác AMC (cmt)
Suy ra góc AMB=góc AMC(2 góc tương ứng)
Mà góc AMB+góc AMC=180 độ (2 góc kề bù)
Suy ra góc AMB=góc AMC=180 độ/2=90 độ
Suy ra AM vuông góc với BC tại M (đpcm)
Vì tam giác AMB=tam giác AMC (cmt)
Suy ra góc ACM=góc ABM (2 góc tương ứng) (đpcm)
hình thì bạn tự vẽ nha !
a) xét ΔAMB và ΔAMC, ta có :
AB = AC (gt)
MB = MC (vì M là trung điểm của cạnh BC)
AM là cạnh chung
⇒ ΔAMB = ΔAMC (c.c.c)
b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
⇒ AM vuông góc với BC
c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
xét ΔAHM và ΔAKM, ta có :
AM là cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (cmt)
⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)
⇒ HA = KA (2 cạnh tương ứng)
HB không thể nào bằng AC được nha, có thể đề sai
d) vì HA = KA nên ⇒ ΔHAK là tam giác cân
trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\) (1)
trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\) (2)
từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC
A B C M GT ∆ABC(AB = AC) M là trung điểm của BC H MH∟AB tại H MK∟AC tại∟K KL a)∆AMB = ∆AMC b)AM∟BC c)HA = KA; HB = KC d)HK song song với BC K X X
Chứng minh:
a) Xét hai ∆AMB và ∆AMC có:
AB = AC (GT)
MB = MB (M là trung điểm của BC)
AM là cạnh chung
Vậy ∆AMB = ∆AMC(c.c.c)
b) Có ∆AMB = ∆AMC(theo a)
⇒ Góc AMB = Góc AMC(2 góc tương ứng)
mà góc AMB + AMC = 180° (2 góc kề bù)
⇒ Góc AMB = Góc AMC = 90°
⇒ AM ∟ BC
c) ΔABC có:
AB = AC(GT)
⇒ ΔABC cân tại A
⇒ Góc B = Góc C
Có MH∟AB tại H ⇒ Góc MHB = 90°
Có MK∟AC tại K ⇒ Góc MKC = 90°
Xét hai ΔBHM và ΔCKM có:
Góc B = Góc C(ΔABC cân tại A)
MB = MC(M là trung điểm của BC)
Góc MHB = Góc MKC = 90°
Vậy ΔBHM = ΔCKM(g.c.g)
⇒ HB = KC(2 cạnh tương ứng)
Có HB + HA = AB
⇒ HA = AB - HB
Có KC + KA = AC
⇒ KA = AC - KC
mà AB = AC(GT)
HB = KC(2 cạnh tương ứng)
⇒ HA = KA (2 cạnh tương ứng)
Hình tự vẽ...
a) Xét \(\Delta AMB\) và \(\Delta AMC\) có:
AB = AC ( giả thiết )
AM: Cạnh chung
AM = BM ( Vì M là trung điểm của BC )
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\) (đpcm)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) ( hai góc tương ứng)
Ma lại có: \(\widehat{AMB}+\widehat{AMC}=180\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\frac{180}{2}=90^o\)
=> AM vuông góc với BC
b) Vì \(CE\perp AB\) và \(AM\perp BC\)
=> EC // AM ( Từ vuông góc đến song song )
c) Vì tam giác ABC vuông cân
\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45^o\)
\(\Rightarrow\widehat{ACE}=90^o-45^0=45^0\)
Xét \(\Delta ACE\) và \(\Delta ACE\) , có:
\(\widehat{ACE}=\widehat{ACB}=45^0\)
\(\widehat{CAE}=\widehat{BAC}=90^0\)
AC: Cạnh chung
=> \(\Delta ACE=\Delta ACB\left(g.c.g\right)\)
=> CE = CB (hai cạnh tương ứng)