Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu ghi rõ ràng hơn chút được không ạ . Cậu ghi AB AC ; BE BI mình không hiểu đc
A B C M I
a) Xét tam giác AMB và tam giác AMC ta có:
AM là cạnh chung
AB = AC (gt)
góc BAM = góc CAM ( AM là tia phân giác của góc BAC)
=> tam giác AMB = tam giác AMC ( c - g - c)
b) Xét tam giác AEM vuông tại E và tam giác AFM vuông tại F ta có:
AM là cạnh chung
góc EAM = góc FAM ( AM là tia p/g của góc BAC)
=> tam giác AEM = tam giác AFM ( ch - gn)
=> ME = MF ( 2 cạnh tương ứng)
c) Ta có:
BI // AC (gt)
IF _|_ AC tại F (gt)
=> FI _|_ BI tại I
Ta có:
góc EBM = góc FCM ( tam giác AMB = tam giác AMC)
góc IBM = góc FCM ( 2 góc so le trong và BI // AC)
=> góc EBM = góc IBM
Xét tam giác EBM vuông tại E và tam giác IBM vuông tại I ta có:
BM là cạnh chung
góc EBM = góc IBM (cmt)
=> tam giác EBM = tam giác IBM ( ch - gn)
=> BE = BI ( 2 cạnh tương ứng)
d) Ta có:
ME = MF ( tam giác AEM = tam giác ÀM)
ME = MB ( tam giác EBM = tam giác IBM)
=> MF = MB
=> M là trung điểm của BF ( M thuộc BF)
=> MB = 1/2 IF
Mà ME = MB ( cmt)
Nên ME = 1/2 IF ( đpcm)
A B C M I E F
a) _ Xét tam giác AME và tam giác AMF có :
E = F ( = 90 độ)
AM là cạnh huyền chung
A1=A2 ( AM là tia phân giác của BAC)
suy ra : tam giác AME = tam giác AMF ( CH-GN)
suy ra AE = AF ( 2 cạnh tương ứng)
suy ra tam giác AEF cân tại A
vẽ hình tạm nha
~ chúc bn học tốt~
hình bn tự vẽ nha
a, Xét hai tam giác vuông AME và AMF có :
AM là cạnh chung
\(\widehat{EAM} = \widehat{FAM}\) ( do AM là tia phân giác góc A )
=> tam giác AME = tam giác AMF ( cạnh huyền - góc nhọn )
=> ME = MF ( hai cạnh tương ứng )
b,Do AC // BM
mà IF vuông góc CA
=> FI vuông góc với BI ( tính chất đường vuông góc )
Do ME vuông góc AB
MI vuông góc BI
=> AB // BI ( tính chất hai đường thẳng // )
Xét hai tam giác vuông MEB và MIB có
BM là cạnh chung
\(\widehat{EMB} = \widehat{MBI}\) ( hai góc so le trong )
=> tam giác MEB = tam giác MIB ( cạnh huyền - góc nhọn )
=> BE = Bi ( hai cạnh tương ứng )
A B C E F M I
a, Xét t/g AMB và t/g AMC có:
AB=AC(gt)
BAM=CAM(gt)
AM chung
=>t/g AMB=t/g AMC (c.g.c)
b, Xét t/g BEM và t/g CMF có:
góc BEM = góc CFM = 90 độ (gt)
MB = MC (t/g AMB=t/g AMC)
góc EBM = góc FCM (gt)
=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
=>ME=MF (2 cạnh tương ứng)
c, BI // FC => góc IBM = góc FCM (so le trong)
Xét t/g BIM và t/g CFM có:
góc IBM = góc FCM (vừa chứng minh)
MB = MC (t/g AMB = t/g AMC)
BMI = CMF (đối đỉnh)
=>t/g BIM = t/g CFM (g.c.g)
=>BI = BF (2 cạnh tương ứng)
Mà BE = CF (t/g BEM = t/g CFM)
=> BE = BI
d, Vì MI = MF (t/g BIM = t/g CFM), ME = MF (câu b)
=> MI = ME
Mà \(MI=\frac{IF}{2}\)
=> \(ME=\frac{IF}{2}\)