Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E F 1 2
a. Vì \(\Delta ABC\)cân tại A \(\Rightarrow\)AB = AC, góc B = góc C.
Xét \(\Delta ABH\)và \(\Delta ACH\)có :
AB = AC
AH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền - cạnh góc vuông).
b.Vì \(\Delta ABH=\Delta ACH\)\(\Rightarrow\)góc AHB = góc AHC ( góc tương ứng )
Mà góc AHB +AHC = 180 độ ( kề bù ) => góc AHB = AHC = 90 độ => AH\(\perp\)BC.
c.Xét tam giac HDB và HEC có :
HB = HC ( vì tg ABH = ACH )
góc B = góc C
=> tam giác HDB = HDC ( cạnh huyền - góc nhọn )
=>BD = CE ( cạnh tương ứng )
Vì AB = AC => AD = AE.
Vì tg AHB = AHC => góc A1 = A2 ( góc tương ứng )
Xét tg AFD và AFE có :
AD = AE
Góc A1 = A2
AF là canh chung
=> Tg AFD = AFE ( c-g-c)
=> góc ADF = AEF ( góc tương ứng )
Ta có : góc A + ADF + AEF = góc A + ABC + ACB = 180 độ
=> 2.ADF = 2.ABC => Góc ADF = ABC mà 2 góc này nằm ở vị trí đồng vị => DE \(//\)BC.
A B C H D E
a) Xét \(\Delta BAH\)và \(\Delta CAH\)có:
AH chung
\(\widehat{BAH}=\widehat{CAH}\)(AH là phân giác \(\widehat{BAC}\))
AB=AC (\(\Delta\)ABC cân tại A)
=> \(\Delta BAH=\Delta CAH\left(cgc\right)\)
b) Có AH là phân giác \(\widehat{BAC}\left(gt\right)\), \(\Delta\)ABC cân tại A (gt)
=> AM là đường phân giác trong của tam giác ABC cân tại A
=> AM trung với đường cao và đường trung tuyến
=> AM _|_ BC(đpcm)
d)
a, xét tam giác ABH à tg ACH có AH chung
^BAH = ^CAH do AH là pg
AB = AC (gt)
=> tg ABH = tg ACH (c-g-c)
b, tg ABH = tg ACH (câu a )
=> ^AHC = ^AHB
mà ^AHC + ^AHB = 180
=> ^AHC = 90
=> AH _|_ BC
c, xét tam giác ADH và tam giác AEH có : AE chung
^ADH = ^AEH = 90
^bah = ^cah
=> Tg ADH= tg AEH (ch-gn)
=> AE = AD
=> tg AED cân tại A => ^ADE = (180 - ^BAC) : 2
tg ABC cân tại A => ^ABC = (180 - ^bac) : 2
=> ^ade = abc
mà ^ade đồng vị ^abc
=> de // bc
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung
Trả lời
a) Ta có:
AB = AE + EB
AC = AD + DC
Mà AB = AC (gt)
=> EB = DC
Xét ΔBDCΔBDC và ΔCEBΔCEB có:
EB = DC (cmt)
góc BDC = góc CEB = 900
BC là cạnh chung
Vậy: ΔBDCΔBDC = ΔCEBΔCEB (cạnh huyền - cạnh góc vuông)
b) Ta có: BC = BH + HC
=> BH = HC = BC2BC2 = 8282= 4 (cm)
Áp dụng định lí Py - ta - go vào ΔAHCΔAHC vuông tại H có:
AC2 = AH2 + HC2
AC2 = 32 + 42
AC2 = 9 + 16
AC2 = 25
AC = 25−−√25= 5 (cm)
đề bài có lỗi ko bạn ?
a, Vì tam giác ABC cân tại A
AH là đường cao nên đồng thời là đường phân giác
=> ^BAH = ^CAH
b, Vì tam giác ABC cân tại A nên AH đồng thời là đường trung tuyến
=> HB = HC = BC/2 = 4 cm
Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{9+16}=5cm\)
c, Xét tam giác AEH và tam giác ADH ta có :
^EAH = ^DAH (cmt)
AH_chung
^AEH = ^ADH = 900
Vậy tam giác AEH = tam giác ADH ( ch - gn )
=> AE = AD ( 2 cạnh tương ứng )
d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)vì AE = AD ; AB = AC
=> ED // BC
mình cx k bt nx , tại thấy cô giao đề như thế nên mình cx chỉ bt lm theo thôi , và cảm ơn bn rất rất nhiều nha , mình đang bị bí ở bài này :3
Muốn DE song song BC: ta theo từ vuông góc đến song song
Với AH vuông góc BC
Xét tam giác như câu A ta có AHB = AHC- kề bù- bằng nhau> vuông góc
Với AH vuông góc DE
Đặt tên I là giao điểm của AH và DE
Ta xét tam giác ADH và AHE = nhau do(cạnh huyền - cạnh góc vuông)
Ta có: DHI = EHI và DH=HEvà HI cạnh chung
bằng nhau xong ta có
DIH=EIH mà kề bù-bằng nhau> vuông góc
Cả hai vuông vs AH thì kết luận Từ vuông góc đến song song