Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn bạn làm nhé, bài này cũng đơn giản thôi :P
a/ \(\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b/ \(\Delta AHD=\Delta AKD\left(canhhuyen...gocnhon\right)\)
\(\Rightarrow HD=KD\)
c/ tự làm
a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)
\(\widehat{BMD}+\widehat{DBM}=90^0\)
mà \(\widehat{ABM}=\widehat{DBM}\)
nên \(\widehat{BMA}=\widehat{BMD}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔAME=ΔDMC
a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)
b) Ta có: ΔBAD=ΔBHD(cmt)
nên BA=BH(hai cạnh tương ứng) và DA=DH(Hai cạnh tương ứng)
Ta có: BA=BH(cmt)
nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DH(cmt)
nên D nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH(đpcm)
c) Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH(cmt)
\(\widehat{ADE}=\widehat{HDC}\)(hai góc đối đỉnh)
Do đó: ΔADE=ΔHDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AE=HC(Hai cạnh tương ứng)
Ta có: BA+AE=BE(A nằm giữa B và E)
BH+HC=BC(H nằm giữa B và C)
mà BA=BH(cmt)
và AE=HC(cmt)
nên BE=BC(đpcm)
d) Ta có: ΔADE=ΔHDC(cmt)
nên DE=DC(Hai cạnh tương ứng)
Ta có: BE=BC(cmt)
nên B nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: DE=DC(cmt)
nên D nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra BD là đường trung trực của EC
hay BD\(\perp\)EC(đpcm)
e) Ta có: DA=DH(cmt)
mà DH<DC(ΔDHC vuông tại H)
nên DA<DC(đpcm)
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
XÉT TAM GIÁC ABD VÀ TAM GIÁC ACD CÓ
AD LÀ CẠNH CHUNG
AB=AC(GT)
GÓC BDA=GÓC CDA
=> TAM GIÁC ADB=TAM GIÁC ADC (CGC)
=> DB=CD
B,THEO (A) TAM GIÁC ABD= TAM GIÁC ADC
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD LÀ TIA PHÂN GIÁC CỦA GÓC A
C;XÉT TAM GIÁC BHD VÀ TAM GIÁC KDC CÓ
BD=DC (THEO A)
\(\widehat{H}=\widehat{K}\)
\(\widehat{B}=\widehat{C}\) (VÌ TAM GIÁC ABC CÂN)
=>\(\Delta BHD=\Delta CKD\left(GCG\right)\)
=>BH=CK
D;XÉT TAM GIÁC AHD VÀ TAM GIÁC ADK CÓ
AH=AK(GT)
AD LÀ CẠNH CHUNG
GÓC AHD=GÓC AKD=90*
=>\(\Delta AHD=\Delta ADK\)
=>DH=DK=> TAM GIÁC DHK CÂN TẠI D
a: Tacó ΔABC cân tại A
mà AD là đường phân giác
nên D là trug điểm của BC và AD\(\perp\)BC
=>DB=DC
b: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)
Do đó ΔAHD=ΔAKD
Suy ra: DH=DK