Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có:
+/ \(\Delta\)ABC cân tại A=> \(\widehat{ABC}=\widehat{ACB}\)và AB=AC
+/AB=AC(gt)
AD+BD=AE+CE
Mà AD=AE(gt)
SUY RA:BD=CE
Xét \(\Delta BCD\)và \(\Delta CEB\)có
BC chung
\(\widehat{ABC}=\widehat{ACB}\)(cmt)
BD=CE(cmt)
Suy ra: \(\Delta BCD\)= \(\Delta CEB\)
=>BE=CD(đpcm)
Ta có hình vẽ:
A B C K D E
Xét Δ ABE và Δ ACD có:
AB = AC (gt)
A là góc chung
AE = AD (gt)
Do đó, Δ ABE = Δ ACD (c.g.c)
=> ABE = ACD (2 góc tương ứng)
và AEB = ADC (2 góc tương ứng)
Mà AEB + BEC = 180o (kề bù)
ADC + CDB = 180o (kề bù)
nên BEC = CDB
Có: AB = AC (gt)
AD = AE (gt)
=> AB - AD = AC - AE
=> BD = CE
Xét Δ KBD và Δ KCE có:
KBD = KCE (cmt)
BD = CE (cmt)
KDB = KEC (cmt)
Do đó, Δ KBD = Δ KCE (đpcm)
Ta có hình vẽ:
A B C D E K Xét tam giác ABE và tam giác ACD có:
A: góc chung
AB = AC (GT)
AD = AE (GT)
=> tam giác ABE = tam giác ACD (c.g.c)
=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng) (1)
=> \(\widehat{ADC}\)=\(\widehat{AEB}\) (2 góc tương ứng) (*)
Mà \(\widehat{ADC}\)+\(\widehat{CDB}\)=1800 (kề bù) (**)
và \(\widehat{AEB}\)+\(\widehat{BEC}\)=1800 (kề bù) (***)
Từ (*),(**),(***) => \(\widehat{KDB}\)=\(\widehat{KEC}\) (2)
Ta có: AB = AC; AD = AE => DB=EC (3)
Từ (1);(2);(3) => tam giác KBD = tam giác KCE (đpcm)
A B D E K C
a. ta có \(\hept{\begin{cases}\widehat{A}\text{ chung}\\AB=AC\\AD=AE\end{cases}\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\Rightarrow}BE=CD\)
b. ta có \(\hept{\begin{cases}BD=CE\\\widehat{BKD}=\widehat{CKE}\text{ (đối đỉnh)}\\\widehat{KBE}=\widehat{KCD}\text{ (Do chứng minh ở câu a)}\end{cases}\Rightarrow\Delta KBD=\Delta KCE}\)
c. ta có \(\hept{\begin{cases}\widehat{ABK}=\widehat{ACK}\text{ (Do c/m ở câu a)}\\AB=AC\\KB=KC\text{ (Do c/m ở câu b)}\end{cases}\Rightarrow\Delta ABK=\Delta ACK\left(c.g.c\right)\Rightarrow}\)AK là phân giác
d. ta có KB=KC ( kết quả c/m của câu b) nên KBC cân tại K
Cho tam giác ABC cân tại A. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:
a. BE = CD
b. Tam giác KBD bằng tam giác KCE
c. AK là phân giác của góc A
d. Tam giác KBC cân