Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn DE song song BC: ta theo từ vuông góc đến song song
Với AH vuông góc BC
Xét tam giác như câu A ta có AHB = AHC- kề bù- bằng nhau> vuông góc
Với AH vuông góc DE
Đặt tên I là giao điểm của AH và DE
Ta xét tam giác ADH và AHE = nhau do(cạnh huyền - cạnh góc vuông)
Ta có: DHI = EHI và DH=HEvà HI cạnh chung
bằng nhau xong ta có
DIH=EIH mà kề bù-bằng nhau> vuông góc
Cả hai vuông vs AH thì kết luận Từ vuông góc đến song song
a: Ta có: ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
c: Ta có: ΔAHB=ΔAHC
=>BH=CH
Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
d: Xét ΔABO vuông tại B và ΔACO vuông tại C có
AO chung
AB=AC
Do đó: ΔABO=ΔACO
=>OB=OC
=>ΔOBC cân tại O
\(\text{a) Có }\Delta ABC\text{cân tại A}\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\text{Xét }\Delta AHB\text{ và }\Delta AHC\text{ có:}\)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
\(AB=AC=10cm\)\(\Rightarrow\)\( \Delta AHB\text{=}\Delta AHC\left(ch-gn\right)\)
\(\widehat{ABC}=\widehat{ACB}\)
\(\text{b) Có }\Delta AHB=\Delta AHC\Rightarrow HB=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)
\(\text{ Xét }\Delta AHB\text{vuông tại H có:}\)
\(AH^2+BH^2=AB^2\) (Định lý py-ta-go)
\(AH^2=AB^2-BH^2=10^2-6^2=100-36=64\)
\(AH=\sqrt{64}=8\left(cm\right)\)
\(\text{c) Xét }\Delta BHM\text{ và }\Delta CHN\text{ có:}\)
\(\widehat{BMH}=\widehat{CNH}=90^o\)
\(HB=HC\text{ (CMT)}\)\(\Rightarrow\)\(\text{ }\Delta BHM\text{ = }\Delta CHN \left(CH-GN\right)\)
\(\widehat{ABC}=\widehat{ACB}\)
\(\text{d) }\)\(\text{Ta có: }MH\perp AB,OB\perp AB\Rightarrow MH//OB\)
\(\Rightarrow\widehat{MHB}=\widehat{CBO}\text{ (2 góc so le trong)}\)
\(\text{Ta có: }NH\perp AC,OC\perp AC\Rightarrow NH//OC\)
\(\Rightarrow\widehat{NHC}=\widehat{BCO}\text{ (2 góc so le trong)}\)
\(\text{ }\text{Mà }\Delta BHM\text{ = }\Delta CHN\Rightarrow\widehat{MHB}=\widehat{NHC}\)
\(\text{Hay}\widehat{CBO}=\widehat{BCO}\)\(\Rightarrow\Delta OBC\text{ cân tại O}\)
B A C H
a) Vì AH là tia phân giác của góc BAC
=> ABH=\(\frac{ABC}{2}=\frac{90^o}{2}=45^o\)(1)
Ta có: ABH+BAC = ABC
hay 45 +BAC = 90o
=> BAC = 90o - 45o
=> BAC = 45o (2)
Từ (1) và (2) => ABH=BAC=45o
B A C H E D
câu này mik chỉ vẽ đc hình thoy, còn đâu mik k làm đc, hí hí
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
ai mà biết
A B C H
xét \(\Delta ABC:AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại A ( đn)
=>\(\widehat{ABC}=\widehat{ACB}\)(t/c tam giác cân )
\(\Rightarrow\widehat{ABH}=\widehat{ACH}\)
xét \(\Delta ABH\)và\(\Delta ACH\)
\(AH-\)cạnh chung
\(\widehat{ABH}=\widehat{ACH}\left(cmt\right)\)
\(AB=AC\left(gt\right)\)
\(\Delta ABH\)=\(\Delta ACH\)(cgc)
=>\(\widehat{AHB}=\widehat{AHC}\)(2 góc tương ứng)
b) ta có :\(\widehat{AHB}+\widehat{AHC}=180^o\left(kb\right)\)
lại có :\(\widehat{AHB}=\widehat{AHC}\left(cmt\right)\)
=>\(\widehat{AHB}=\widehat{AHC}=90^o\)
câu c bạn ghi thiếu ; không có câu hỏi nên mình cũng k trả lời và k vẽ