K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2018

( hình vẽ và GTKL tự làm)

a) xét \(\Delta ABH\)\(\Delta ACH\)có :

\(AB=AC\)\(\left(GT\right)\)

\(BH=CH\left(GT\right)\)\(\Rightarrow\Delta ABH=\Delta ACH\left(c.c.c\right)\)

\(AH\)\(chung\)

b) Ta có  \(AHB=AHC\)( 2 góc tương ứng )

.Mà \(AHB+AHC=180\)O

\(\Rightarrow AHB=AHC=90\)O

\(\Rightarrow AH\perp BC\)

C) Xét 2 \(\Delta AHB\)\(KHC\)có :

\(BH=CH\)\(\left(GT\right)\)

\(KH=AH\left(GT\right)\)

\(BHA=CHK\)( ĐỐI ĐỈNH )

\(\Rightarrow\Delta AHB=\Delta KHC\left(c.g.c\right)\)

\(\Rightarrow ABH=KCH\)( 2 góc  tương ứng ) 

Mà 2 góc này so le trong

\(\Rightarrow CK//AB\)

5 tháng 11 2017

a, vì AH là trung diểm của BC nên ∆ABH=∆ACH

b,∆ABH=∆ACH và AH là trung diểm của BC nên AH vuông góc với BC

c,vì AH vuông góc với BC và ∆ABH=∆ACH => CK//AB

5 tháng 11 2017

Hình thì sao bạn

29 tháng 10 2019

B A C D K H I

a ) Xét \(\Delta AHB\) vuông tại H ta có :

\(\widehat{HBA}+\widehat{HAB}=90^o\) ( hai góc phụ nhau )

\(\widehat{HAB}=90^o-\widehat{HBA}=90^o-60^o=30^o\)

Vậy \(\widehat{HAB}=60^o\)

b ) Xét \(\Delta AHI\) và \(\Delta ADI\)có :

AH = AD (gt)

IH=ID (gt)

AI cạnh chung 

\(\Rightarrow\Delta AHI=\Delta ADI\left(c.c.c\right)\)

Suy ra \(\widehat{HIA}=\widehat{DIA}\) ( hai góc tương ứng )

Mà \(\widehat{HIA}+\widehat{DIA}=180^o\) ( 2gocs kề bùy )

\(\Rightarrow\widehat{HIA}=\widehat{DIA}=90^o\)

Do đó \(AI\perp HD\left(đpcm\right)\)

c ) Vì  \(\Delta AHI=ADI\) ( cm câu b )

\(\Rightarrow\widehat{HAK}=\widehat{DAK}\) ( 2 góc tương ứng )

Xét \(\Delta AHK\) và \(\Delta ADK\) có ;

AH = AD (gt)

\(\widehat{HAK}=\widehat{DAK}\left(cmt\right)\)

AK cạn chung

\(\Rightarrow\Delta AHK=\Delta ADK\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHK}=\widehat{ADK}=90^o\) ( 2 góc tương ứng )

\(\Rightarrow AD\perp AC\)

Mà \(BA\perp AC\left(\Delta ABC\perp A\right)\)

AD//AB ( đpcm)

a) Tam giác sao lại có số đo??!!!!

b) Xét \(\Delta AME\)và \(\Delta BMH\)có:

         AM = BM (M là trung điểm của AB)

         \(\widehat{AME}=\widehat{BMH}\)(2 góc đối đỉnh)

         ME = MH (gt)

\(\Rightarrow\Delta AME=\Delta BMH\left(c.g.c\right)\)

R làm sao mà suy ra AH vuông góc vs AE??!!!!

c) Ta có: \(\Delta AME=\Delta BMH\)(theo a)

\(\Rightarrow\widehat{EAM}=\widehat{HBM}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AE//BH\)

hay \(AE//BC\)(1)

Xét \(\Delta ANF\)và \(\Delta CNH\)có:

      AN = CN (N là trung điểm của AC)

      \(\widehat{ANF}=\widehat{CNH}\)(2 góc đối đỉnh)

       NF = NH(gt)

\(\Rightarrow\Delta ANF=\Delta CNH\left(c.g.c\right)\)

\(\Rightarrow\widehat{AFN}=\widehat{CHN}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

=> AF // CH

hay AF // BC (2)

Từ (1) và (2) => A,E,F thẳng hàng

21 tháng 12 2021
Vì AB=AC=>∆ABC là ∆ cân Vì ∆ABC là ∆ cân => GÓC B = GÓC C AH LÀ TIA PG CỦA GÓC A =>BAH=CAH XÉT ∆ABH và ∆ACH có AB=AC GÓC BAH= GÓC CAH Góc B= góc C Vậy ∆ABH=∆ACH(G-C-G) =>AHB=AHC(2 GÓC TƯƠNG ỨNG =NHAU) MÀ AHB+AHC=180°(2 GÓC KỀ BÙ) =>AHB=AHC=180°÷2=90° =>AH VUÔNG GÓC VỚI BC
AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

a)

Xét tam giác $ABH$ và $ACH$ có:
\(AB=AC\) do tam giác $ABC$ đều

\(BH=CH=\frac{BC}{2}\)

\(AH\) chung

\(\Rightarrow \triangle ABH=\triangle ACH(c.c.c)\)

b) Vì tam giác $ABC$ đều nên \(\widehat{DBM}=\widehat{ACH}\)

\(\widehat{ACH}=\widehat{ECN}\) (đối đỉnh)

\(\Rightarrow \widehat{DBM}=\widehat{ECN}\)

Xét 2 tam giác vuông $BDM$ và $CEN$ có:

\(\left\{\begin{matrix} BD=CE\\ \widehat{DBM}=\widehat{ECN}\end{matrix}\right.\Rightarrow \triangle BDM=\triangle CEN(ch-gn)\)

\(\Rightarrow DM=EN\)

Lại có: \(DM\parallel EN\) (cùng vuông góc với BC)

\(\Rightarrow \widehat{MDI}=\widehat{NEI}\) ( so le trong)

Xét tam giác $MDI$ và $NEI$ có:

\(\widehat{MDI}=\widehat{NEI}(cmt)\)

\(DM=EN\)

\(\widehat{DMI}=\widehat{ENI}=90^0\)

\(\Rightarrow \triangle MDI=\triangle NEI(g.c.g)\Rightarrow DI=EI\), do đó $I$ là trung điểm của $DE$

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

c) Vì $I$ là trung điểm của $DE$ (đã chứng minh ở phần b)

\(KI\perp DE\) nên $KI$ là đường trung trực của $DE$

Do đó: \(KD=KE\)

Mặt khác: Vì theo phần a, \(\triangle AHB=\triangle AHC\Rightarrow \widehat{AHB}=\widehat{AHC}\)

\(\widehat{AHB}+\widehat{AHC}=180^0\Rightarrow \widehat{AHB}=\widehat{AHC}=90^0\)

Do đó: \(AH\perp BC\) hay $KH\perp BC$

Mà $H$ là trung điểm $BC$ nên $KH$ là đường trung trực của $BC$

Do đó: \(KB=KC\)

Xét tam giác $BDK$ và $CEK$ có:

\(BD=CE\) (giả thiết)

\(BK=CK\) (cmt)

\(DK=EK\) (cmt)

\(\Rightarrow \triangle BDK=\triangle CEK(c.c.c)\)

\(\Rightarrow \widehat{DBK}=\widehat{ECK}\)

Lại thấy: \(\widehat{DBK}=\widehat{ABK}=\widehat{ACK}\) (dễ thấy do \(\triangle ABK=\triangle ACK(c.c.c)\) ))

Do đó: \(\widehat{ECK}=\widehat{ACK}\) . Hai góc này lại là 2 góc bù nhau nên mỗi góc bằng $90^0$

\(\Rightarrow AC\perp CK\) (đpcm)

14 tháng 12 2019

Không biết có phải mình vẽ hình sai hay không chứ mình thấy đề hơi vô lí