K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

13 tháng 12 2021

Câu 4: 

a: Xét ΔMIN và ΔMIP có

MI chung

IN=IP

MN=MP

Do đó: ΔMIN=ΔMIP

2 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ b,\left\{{}\begin{matrix}BM=MC\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABC}=\widehat{BCD}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}CD\\ c,\left\{{}\begin{matrix}BM=MC\\\widehat{AMC}=\widehat{BMD}\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\\ \Rightarrow\widehat{ACB}=\widehat{CBD}\\ \text{Mà 2 góc này ở vị trí slt nên }AC\text{//}BD\)

2 tháng 12 2021

cảm ơnvui

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Lời giải:
a.

Xét tam giác $AMB$ và $EMC$ có:

$\widehat{AMB}=\widehat{EMC}$ (đối đỉnh)

$AM=EM$

$MB=MC$

$\Rightarrow \triangle AMB=\triangle EMC$ (c.g.c)

b.

Vì $\triangle AMB=\triangle EMC$ nên $\widehat{MAB}=\widehat{MEC}$

Mà 2 góc này ở vị trí so le trong nên $EC\parallel AB$

Mà $AB\perp AC$ nên $EC\perp AC$ (đpcm)

c.

Vì $\triangle AMB=\triangle EMC$ nên:

$AB=EC$

Vì $EC\perp AC$ nên $\widehat{ECA}=90^0=\widehat{BAC}$

Xét tam giác $ECA$ và $BAC$ có:
$\widehat{ECA}=\widehat{BAC}=90^0$ (cmt)

$AC$ chung

$EC=BA$ (cmt)

$\Rightarrow \triangle ECA=\triangle BAC$ (c.g.c)

$\Rightarrow EA=BC$

Mà $EA=2AM$ nên $2AM=BC$ (đpcm)

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Hình vẽ:

22 tháng 3 2023

a) Xét tam giác AMB và tam giác AMC ta có:

AM chung

AB=AC (gt)

MB=MC (vì M là trung điểm của BC)

Suy ra tam giác AMB=tam giác AMC (c-c-c) (đpcm)

b) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc BAM=góc CAM (2 góc tương ứng)

Suy ra AM là tia phân giác của góc BAC (đpcm)

c) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc AMB=góc AMC(2 góc tương ứng)

Mà góc AMB+góc AMC=180 độ (2 góc kề bù)

Suy ra góc AMB=góc AMC=180 độ/2=90 độ

Suy ra AM vuông góc với BC tại M (đpcm)

Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc ACM=góc ABM (2 góc tương ứng) (đpcm)