Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên BC lấy G sao cho DG // AC
Dễ dàng suy ra \(\Delta BDG\approx\Delta BAC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{DB}{DG}\)(1)
Vì EC // DG nên áp dụng định lý Thalès vào tam giác KDG, ta được:
\(\frac{KE}{KD}=\frac{EC}{DG}\)hay \(\frac{KE}{KD}=\frac{BD}{DG}\)(vì BD = CE (gt)) (2)
Từ (1) và (2) suy ra \(\frac{KE}{KD}=\frac{AB}{AC}\left(đpcm\right)\)
a: AE+EC=AC
nên AE=15-9=6(cm)
Xét ΔABC có
AD/AB=AE/AC=2/5
Do đó: DE//BC
b: Xét ΔABM có DI//BM
nên DI/BM=AD/AB
=>DI/MC=2/5(1)
Xét ΔACM có IE//CM
nên IE/CM=AE/AC=2/5(2)
Từ (1) và (2) suy ra DI=EI
hay I là trung điểm của DE
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
Kẻ IN//BC; DM//BC
Xét ΔEDM có
I là trung điểm của ED
IN//DM
DO đó: N là trung điểm của ME
Vì DM//BC
nên góc ADM=góc AMD
=>AD=AM
mà AD=EC
nên AM=EC
=>N là trung điểm của AC
Xét ΔAKC có
N là trung điểm của AC
NI//KC
Do đó: I là trung điểm của AK
Xét tứ giác ADKE có
I là trung điểm chung của AK và DE
nên ADKE là hình bình hành
a: Xét ΔBAC có
AD/AB=AE/AC(2)
nên DE//BC
b: Xét ΔABM có DN//BM
nên DN/BM=AD/AB(1)
Xét ΔACM có NE//MC
nên NE/MC=AE/AC(3)
Từ (1), (2) và (3) suy ra DN/BM=NE/MC
=>DN/NE=5/2
hay DN=2,5NE