Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5
=>AD=4,5cm; CD=7,5cm
d: góc ADI=90 độ-góc ABD
góc AID=góc BIH=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADI=góc AID
=>ΔAID cân tại A
A B C D I 1 2 H
a) Ta có AB2+AC2=92+122=225 (cm)
BC2=152=225 (cm)
⇒ AB2+AC2=BC2
⇒ ΔABC vuông tại A (theo đl Pitago đảo)
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: Xét ΔBAC có BD là phân giác
nen AD/BA=DC/BC
=>AD/3=DC/5=12/8=1,5
=>AD=4,5cm; DC=7,5cm
d: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AID=góc ADI
=>ΔAID cân tại A
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔBAC có BD là phan giác
=>AD/AB=DC/BC
=>AD/3=DC/5=8/8=1
=>AD=3cm; DC=5cm
b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>AD/HI=BA/BH
=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID
=>ΔAID cân tại A
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
Suy ra: \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
A B C H D E
a) Xét tam giác HBA và tam giác ABC có:
Góc B chung
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\frac{HB}{AB}=\frac{AB}{CB}\Rightarrow AB^2=BH.BC\)
b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có:
\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
Áp dụng tính chất tia phân giác trong tam giác ta có:
\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{12}{20}=\frac{3}{5}\)
mà AD + DC = AC = 16 cm nên \(AD=6cm.\)
c) Xét tam giác BEA và tam giác BDC có:
\(\widehat{ABE}=\widehat{CBD}\) (BD là tia phân giác)
\(\widehat{BAE}=\widehat{BCD}\) (Cùng phụ với góc \(\widehat{ABC}\) )
\(\Rightarrow\Delta BEA\sim\Delta BDC\left(g-g\right)\)
\(\Rightarrow\frac{BE}{BD}=\frac{AB}{CB}\)
Lại có \(\frac{AB}{CB}=\frac{AD}{DC}\Rightarrow\frac{BE}{BD}=\frac{AD}{DC}\Rightarrow\frac{DB}{EB}=\frac{DC}{DA}\)
Bài giải :
a) Xét tam giác HBA và tam giác ABC có:
Góc B chung
^BHA=^BAC(=90o)
⇒ΔHBA∼ΔABC(g−g)
⇒HBAB =ABCB ⇒AB2=BH.BC
b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có:
BC=√AB2+AC2=20(cm)
Áp dụng tính chất tia phân giác trong tam giác ta có:
ADDC =ABBC =1220 =35
mà AD + DC = AC = 16 cm nên AD=6cm.
c) Xét tam giác BEA và tam giác BDC có:
^ABE=^CBD (BD là tia phân giác)
^BAE=^BCD (Cùng phụ với góc ^ABC )
⇒ΔBEA∼ΔBDC(g−g)
⇒BEBD =ABCB
Lại có ABCB =ADDC ⇒BEBD =ADDC ⇒DBEB =DCDA