Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔADE và ΔABC co
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng với ΔABC
Xét ΔABE và ΔACD có
AB/AC=AE/AD
góc A chung
=>ΔABE đồng dạng với ΔACD
a: Xét ΔACD và ΔABE có
\(\dfrac{AC}{AB}=\dfrac{AD}{AE}\left(\dfrac{20}{15}=\dfrac{8}{6}=\dfrac{4}{3}\right)\)
\(\widehat{CAD}\) chung
Do đó: ΔACD~ΔABE
b: Ta có: ΔACD~ΔABE
=>\(\widehat{ACD}=\widehat{ABE}\) và \(\widehat{AEB}=\widehat{ADC}\)
Xét ΔHDB và ΔHEC có
\(\widehat{HBD}=\widehat{HCE}\)
\(\widehat{DHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHDB~ΔHEC
=>\(\dfrac{HD}{HE}=\dfrac{HB}{HC}\)
=>\(HD\cdot HC=HB\cdot HE\)
c: Ta có: AD+DB=AB
=>DB=15-8=7(cm)
Ta có: AE+EC=AC
=>EC+6=20
=>EC=14(cm)
Xét ΔADE và ΔACB có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\left(\dfrac{8}{20}=\dfrac{6}{15}=\dfrac{2}{5}\right)\)
\(\widehat{A}\) chung
Do đó: ΔADE~ΔACB
=>\(\widehat{ADE}=\widehat{ACB}\)
mà \(\widehat{ADE}=\widehat{FDB}\)
nên \(\widehat{FDB}=\widehat{FCE}\)
Xét ΔFDB và ΔFCE có
\(\widehat{FDB}=\widehat{FCE}\)
\(\widehat{F}\) chung
Do đó: ΔFDB~ΔFCE
=>\(\dfrac{S_{FDB}}{S_{FCE}}=\left(\dfrac{BD}{CE}\right)^2=\dfrac{1}{4}\)
=>\(S_{FCE}=4\cdot S_{FDB}\)