K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

a) xét tam giác AMI zà tam giác ABD có

góc BAD chung

xét tam giác ABD có tia phân giác DM

=>\(\frac{AM}{MB}=\frac{AD}{BD}\left(1\right)\)

xét tam giac ADC có tia phân giác DN

\(\frac{AN}{NC}=\frac{AD}{DC}\left(2\right)\)

mà BD=DC (gt ) (3 )

từ 1 ,2 ,3  suy ra

\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{AD}{DC}\)

=> MN//BC 

b) Tam giác ABD có MI//BD

=> \(\frac{AM}{AB}=\frac{AI}{AD}=\frac{MI}{BD}\left(4\right)\)

tam giác ADC có IN//DC

=>\(\frac{AN}{AC}=\frac{AI}{DC}=\frac{IN}{DC}\left(5\right)\)

từ (4) ,(5) suy ra

\(\frac{MI}{BD}=\frac{IN}{DC}=\frac{AI}{AD}\)

mà BD=DC

=> MI=NI

=> I là trung điểm của MN

4 tháng 3 2022

A) áp dụng tính chất đường phân giác 

có : \(\dfrac{BD}{DC}\)=\(\dfrac{AB}{AC}\)=6/8=3/4

=>\(\dfrac{BD}{3}\)=\(\dfrac{DC}{4}\)=\(\dfrac{10}{7}\)

=>BD=3.10/7=30/7

=>DC=4.10/7=40/7

4 tháng 3 2022

undefined

13 tháng 9 2023

a) Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 10 - BD\)

Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:

\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{10 - BD}} = \frac{6}{8} \Leftrightarrow 8BD = 6.\left( {10 - BD} \right) \Rightarrow 8BD = 60 - 6BD\)

\( \Leftrightarrow 8BD + 6BD = 60 \Leftrightarrow 14BD = 60 \Rightarrow BD = \frac{{60}}{{14}} = \frac{{30}}{7}\)

\( \Rightarrow DC = 10 - \frac{{30}}{7} = \frac{{40}}{7}\)

Vậy \(BD = \frac{{30}}{7}cm;DC = \frac{{40}}{7}cm\).

b) Kẻ \(AE \bot BC \Rightarrow AE\) là đường cao của tam giác \(ABC\).

Vì \(AE \bot BC \Rightarrow AE \bot BD \Rightarrow AE\)là đường cao của tam giác \(ADB\)

Diện tích tam giác \(ADB\) là:

\({S_{ADB}} = \frac{1}{2}BD.AE\)

Vì \(AE \bot BC \Rightarrow AE \bot DC \Rightarrow AE\)là đường cao của tam giác \(ADC\)

Diện tích tam giác \(ADC\) là:

\({S_{ADC}} = \frac{1}{2}DC.AE\)

Ta có: \(\frac{{{S_{ADB}}}}{{{S_{ADC}}}} = \frac{{\frac{1}{2}AE.BD}}{{\frac{1}{2}AE.CD}} = \frac{{BD}}{{DC}} = \frac{{\frac{{30}}{7}}}{{\frac{{40}}{7}}} = \frac{3}{4}\).

Vậy tỉ số diện tích giữa \(\Delta ADB\) và \(\Delta ADC\) là \(\frac{3}{4}\).

 Cho tam giác ABC có AB = 5cm, AC = 6cm và BC = 7cm. Tia phân giác của góc BAC cắt cạnh BC tại E.a)Tính các đoạn EB, EC.b) Chứng minh:  SABE/SACE = AB/AC.c) ) Kẻ trung tuyến AM, biết diện tích tam giác ABC là S. Tính diện tích tam giác AME  theo S.Bài 3. Cho tam giác ABC , đường phân giác góc A cắt BC tại D.a)Hãy viết tỉ lệ thức trong trường hợp trên .b) Vẽ đường phân giác góc C cắt AB tại F , viết tỉ lệ...
Đọc tiếp

 Cho tam giác ABC có AB = 5cm, AC = 6cm và BC = 7cm. Tia phân giác của góc BAC cắt cạnh BC tại E.

a)Tính các đoạn EB, EC.

b) Chứng minh:  SABE/SACE = AB/AC.

c) ) Kẻ trung tuyến AM, biết diện tích tam giác ABC là S. Tính diện tích tam giác AME  theo S.

Bài 3. Cho tam giác ABC , đường phân giác góc A cắt BC tại D.

a)Hãy viết tỉ lệ thức trong trường hợp trên .

b) Vẽ đường phân giác góc C cắt AB tại F , viết tỉ lệ thức trong trường hợp này.

c)Gọi BE là phân giác góc B , hãy viết tỉ lệ thức từ phân giác này .

d) Dựa vào các kết quả trên , chứng minh rằng: DB/DC. FB/FA. EA/EC = 1.

Bài 4. Cho tam giác ABC vuông tại A có AD là phân giác góc A . Kẻ DE // AC ( E  thuộc AB ). Biết AB = 21cm , AC = 28cm.

Tính độ dài các đoạn DB , DC và DE

Bài 5. Cho tam giác DEF có trung tuyến DM . Đường phân giác góc DME cắt DE tại G , đường phân giác góc DMF cắt DF tại H .

 a)Chứng minh rằng: GE/GD = HF/HD

b) Xác định vị trí của GH và EF ?

 

0
Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0