Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: BC=10cm
a: AC=8cm
Xét ΔABC vuông tại A có sin B=AC/BC=4/5
nên góc B=53 độ
=>góc C=37 độ
b: \(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
\(BH=\dfrac{6^2}{10}=3.6\left(cm\right)\)
CH=BC-BH=6,4cm
c: AM=BC/2=5cm
\(HM=\sqrt{5^2-4.8^2}=1.4\left(cm\right)\)
\(S=\dfrac{1.4\cdot4.8}{2}=3.36\left(cm^2\right)\)
bạn vào đường link này http://olm.vn/hoi-dap/question/109042.html
vì BD là trung tuyến của AD => BD vuông góc vs AD + 2 tam giác ABD và DBC đồng dạng
theo tam giác ABD áp dụng định lý pi-ta-go ta có: BD^2=AB^2+AD^2 => BD=5cm
mà 2 tam giác ABD vs DBC đồng dạng nên => BC=BD=5cm
Bài 2:
a: AB/3=AC/4=k
=>AB=3k; AC=4k
Ta có: \(AB^2+AC^2=BC^2\)
=>\(25k^2=100\)
=>k=2
=>AB=6cm; AC=8cm
b: Xét ΔBAC có BM là phân giác
nên MA/AB=MC/BC
=>MA/3=MC/5
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{MA}{3}=\dfrac{MC}{5}=\dfrac{8}{8}=1\)
=>MA=3cm
1. Cho tam giac ABC vuong tai A duong cao AH.
a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;
b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.
2. Cho tam giac ABC vuong tai A duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.
3. Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.
a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;
b) Tinh do dai cac doan thang BH, CH.
4. Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung voi canh huyen. Tinh do dai duong cao va cac doan thang
duong cao do chia ra tren canh huyen
5. Cho mot tam giac vuong, biet ti so hai canh goc vuong la $\frac{5}{12}$512 , canh huyen la 26cm. Tinh do dai cac canh goc vuong va hinh chieu cua
canh goc vuong tren canh huyen.
6. Cho tam giac ABC vuong tai A. Biet $\frac{AB}{AC}=\frac{5}{7}$ABAC =57 , duong cao AH= 15cm. Tinh HB, HC.
7. Cho hinh thang can ABCD (AB // CD) , biet AB= 26cm, CD= 10cm va duong cheo AC vuong goc voi canh ben BC. Tinh dien tich cua
hinh thang ABCD
8. Cho tam giac ABC vuong tai A, AB= 12cm, AC= 16cm, phan giac AD, duong cao AH. Tinh do dai cac doan thang HB, HD, HC.
9. Cho tam giac ABC vuong tai A, phan giac AD, duong cao AH. Biet BD= 15cm, CD= 20cm.Tinh do dai cac doan BH, HC.
10. Cho tam giac ABC vuong tai A, duong cao AH. Tinh chu vi cua tam giac ABC, biet AH= 14cm, $\frac{HB}{HC}=\frac{1}{4}$HBHC =14 .
11. Cho hinh thang vuong ABCD, goc A= goc D= 900, AB= 15cm, AD= 20cm, cac duong cheoAC va BD vuong goc voi nhau o O.
a) Tinh do dai cac doan OB, OD;
b) Tinh do dai duong cheo AC;
c) Tinh dien tich hinh thang ABCD
A B C D E
Dễ dàng CM được tam giác EBD vuông tại D và có đường cao BA
Ta có góc E1 = góc B1=góc B2=1/2 goc B
Theo công thức tg2a=2tga/(1-tg^2a) ta có
tgB=2tgE1/(1-tg^2E1) <=> 4/3 = 2.\(\frac{6}{EA}\). \(\frac{1}{1-\frac{36}{EA^2}}\)=\(\frac{12}{EA}\).\(\frac{EA^2}{EA^2-36}\)=\(\frac{12EA^2}{EA^2-36}\)
Giải PT ta có EA= 12 \(6\sqrt{5}\)
Hình bạn tự vẽ nha
Hạ đường cao BH ta có:
Xét tam giác vuông HBA ta có
\(\sin_{30^0}=\frac{1}{2}=\frac{BH}{6}\Rightarrow BH=3\)
\(\cos_{30^0}=\frac{\sqrt{3}}{2}=\frac{AH}{6}\Rightarrow AH=3\sqrt{3}\approx5,2\)
\(CH=AC-AH=8-5,2=2,8\)
Áp dụng định lý Py - ta - go vào tam giác HBC ta có:
\(BC=\sqrt{BH^2+HC^2}=\sqrt{3^2+2,8^2}\approx4,1\)(1)
Xét tam giác HBC ta có:
\(\tan_C=\frac{BH}{CH}=\frac{3}{2,8}\approx1,1\)
\(\Rightarrow\widehat{C}\approx47,72^0\)(2)
Trong tam giác ABC có
\(\widehat{B}=180^0-\widehat{A}-\widehat{C}=180^0-30^0-47,72^0=102,28^0\)(3)
Từ (1)(2)(3)=> ĐPCM
P/s tham khảo nha