Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B H 4,5 6 7,5
Áp dụng định lí Pytago đảo ta có:
\(AC^2+AB^2=4,5^2+6^2=56,25cm\)
\(BC^2=7,5^2=56,25cm\)
\(\Rightarrow AC^2+AB^2=BC^2\)
Vậy Tam giác ABC vuông tại A.
Xét Tam giác ABC vuông tại A, kẻ AH vuông BC:
\(AB.AC=BC.AH\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{4,5.6}{7,5}=3,6cm\)
Với bài toán này, ta sử dụng hệ thức lượng trong tam giác.
A B C H E F
a. Kiểm tra thấy \(AB^2+AC^2=BC^2\) nên tam giác ABC vuông tại A.
\(AH=\frac{AB.AC}{BC}=\frac{60}{13}\)
b. Áp dụng hệ thức lượng, ta thấy \(AB.EA=AH^2=AF.AC\)
c. Từ kết quả câu b và góc A vuông ta suy ra được \(\Delta AEF\sim\Delta ACB\left(c-g-c\right)\).
- Ap dung dinh ly pitago dao vao tam giac ABC ta co AB2+AC2=52+122=169=132 . ma BC2=132
- =>AB2+AC2=BC2=>Tam giac ABC vuong tai A
- Ke duong cao AH .Ap dung ti so luong giac vao tam giac vuong ABC ta co \(\frac{1}{AH^2}\)= \(\frac{1}{AB^2}\)+ \(\frac{1}{AC^2}\)=>\(\frac{1}{AH^2}\)= \(\frac{1}{5^2}\)+ \(\frac{1}{12^2}\)=>AH=\(\frac{60}{13}\)
3.Tu HE vuong goc voi AB , HF vuong goc voi AC =>HEA =900 , HFA =900 va BAC =900=>tu giac EHFA la hinh chu nhat =>goc AEF=EAH ma EAH=ACH vi cung phu voi goc HAC =>Ta chung minh duoc EAF ~ ABC 2.=>\(\frac{AB}{AF}\)= \(\frac{AC}{AE}\)=>AB\(\times\)AE = AF\(\times\)AC
c: Xét ΔABH vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
muốn giúp lắm nhưng mới lớp 7 chỉ bt làm phần a,d nghĩ bài a,d là toán lớp 7
a ) Xét tam giác ABC có :
162 + 122 = 400 ( bình phương hai cạnh nhỏ nhất )
Mà BC2 = 202= 400
=> AB2 + AC2 = BC2
=> Tam giác ABC vuông ( theo đ/l Py - ta - go đảo )
Ta có: AB2 + AC2 = 62 + (4,5)2 = 56,25
BC2 = (7,5)2 = 56,25
=> AB2 + AC2 = BC2
Hay tam giác ABC vuông tại A