Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △BEA và △BAC có :
\(\widehat{E}=\widehat{A}\left(=90^o\right)\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\)△BEA ~ △BAC (g.g)
b) +) Vì △BEA ~ △BAC
\(\Rightarrow\frac{AB}{BC}=\frac{BE}{AB}\)
\(\Rightarrow AB^2=BE.BC\)
\(\Rightarrow BE=1,8\left(cm\right)\)
+) Áp dụng định lý Pythagoras vào △ABC, ta được :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\)
+) Vì △BEA ~ △BAC
\(\Rightarrow\frac{AE}{AC}=\frac{BE}{AB}\)
\(\Rightarrow AE=\frac{AC.BE}{AB}=\frac{4\cdot1,8}{3}=2,4\left(cm\right)\)
c) Xét △BAI và △BEK có :
\(\widehat{A}=\widehat{E}=\left(90^o\right)\)
\(\widehat{ABI}=\widehat{IBC}\left(=\frac{1}{2}\widehat{ABC}\right)\)
\(\Rightarrow\)Vì △BAI ~ △BEK (g.g)
\(\Rightarrow\frac{EK}{AI}=\frac{BE}{BA}\)
\(\Rightarrow BE.AI=BA.EK\)(ĐPCM)
d) Vì BI là tia phân giác \(\widehat{B}\)của Vì △ABC
\(\Rightarrow\hept{\begin{cases}\frac{KA}{KE}=\frac{AB}{BE}\\\frac{IC}{IA}=\frac{BC}{AB}\end{cases}}\)
Vì Vì △BEA ~ △BAC
\(\Rightarrow\frac{AB}{BE}=\frac{BC}{AB}\)
\(\Rightarrow\frac{KA}{KE}=\frac{IC}{IA}\)(ĐPCM)
a) Xét tam giác ABC có AD là phân giác
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{DC}{AC}=\dfrac{BD+DC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{5}{4+6}=\dfrac{5}{10}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{1}{2}.AB=\dfrac{1}{2}.4=2\left(cm\right)\\DC=\dfrac{1}{2}.AC=\dfrac{1}{2}.6=3\left(cm\right)\end{matrix}\right.\)
b) Ta có: DE//AC \(\Rightarrow\widehat{ADE}=\widehat{DAC}\)(so le trong)
Mà \(\widehat{DAC}=\widehat{BAD}\)(AD là phân giác)
\(\Rightarrow\widehat{ADE}=\widehat{BAD}\) => Tam giác ADE cân tại E => AE=DE
c) Xét tam giác ABC có:
DE//AC \(\Rightarrow\dfrac{DE}{AC}=\dfrac{BD}{BC}\Rightarrow DE=\dfrac{BD.AC}{BC}=\dfrac{2.6}{5}=2,4\left(cm\right)\)
Mà AE=DE \(\Rightarrow AE=DE=2,4cm\)