Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC
Ta Có: 27-3 < AC < 27+3
24 < AC < 30
➜ 24 < 25,26,27,28,29 < 30
Vì AC là số nguyên tố nên AC = 29
Chu vi △ABC là :
3+27+29=59
Vậy chu vi △ABC là 59
Chắc là đúng đấy =))
Lời giải:
Theo BĐT tam giác thì:
$AC< AB+AC$ hay $AC< 9$
$BC< AB+AC$ hay $7< 2+AC$ hay $AC>5$ (cm)
Vậy $9> AC> 5$. Mà $AC$ là số nguyên tố nên $AC=7$
Xét ΔABC có
AC-AB<BC<AB+AC
\(\Leftrightarrow7-3< BC< 7+3\)
\(\Leftrightarrow4< BC< 10\)
\(\Leftrightarrow BC\in\left\{5;7\right\}\)
Ta có: AC + AB > BC > AC - AB(bất đẳng thức tam giác)
=>7 + 3 > BC > 7 - 3
10 > BC > 4
Mà độ dài BC là số nguyên tố nên BC\(\in\)(5,7)
Với BC =5 thì \(\Delta ABC\) là tam giác thường
Với BC =7 thì \(\Delta ABC\) là tam giác cân
AB-BC<AC<AB+BC=> 7<AC<23
Mà AC là số nguyên tố => AC=19
Trong bất đẳng thức tam giác ớ pn
Xét ΔABC có BC-AB<AC<BC+AB
=>16-3<AC<16+3
=>13<AC<19
mà AC là số nguyên tố
nên AC=17(cm)
Theo bất đẳng thức của tam giác ABC ta có : AB < AC+BC = AC < 1cm + 9cm => AB < 10cm (1)
Theo hệ quả bất đẳng thức tam giác ABC ta có: AB > BC-AC= AB > 9cm-1cm => AB > 8cm (2)
Từ (1) và (2) ta => 8cm< AB < 10cm => AB = 9cm
Chu vi tam giác ABC: AB+AC+BC = 9cm+9cm+1cm = 19cm
Ta có: \(BC>AC>AB\Rightarrow3BC>BC+AC+AB=18\Rightarrow BC>6\)
Theo bất đẳng thức trong tam giác ABC: \(BC< AC+AB\Rightarrow2BC< BC+AC+AB=18\Rightarrow BC< 9\)
Suy ra \(6< BC< 9\)mà \(BC⋮2\Rightarrow BC=8\)
Vậy độ dài cạnh BC là 8cm
Chúc bạn học tốt!
a,trong tan giác ABC có
bc-ab<ac<bc+ab
=>24<ac<30
Mà ac là số nguyên tố =>ac=29(cm)
b,chu vi tam giác ABC là
3+27+29=59(cm)