K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB có MD là phân giác

nên AD/DB=AM/MB=AM/MC(1)

Xét ΔAMC có ME là phân giác

nen AE/EC=AM/MC(2)

Từ (1) và (2) suy ra AD/DB=AE/EC

hay DE//BC

b: \(\widehat{MDE}+\widehat{MED}=\widehat{DMB}+\widehat{EMC}\)

\(=\dfrac{1}{2}\cdot\left(\widehat{AMB}+\widehat{AMC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

=>ΔDME vuông tại M 

c: Xét ΔABM có DI//BM

nên DI/BM=AD/AB(1)

Xét ΔACM có IE//CM

nên IE/CM=AE/AC(2)

Xét ΔABC có DE//BC

nên AD/AB=AE/AC(3)

Từ (1), (2)và (3) suy ra ID=IE

hay I là trung điểm của DE

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao

16 tháng 6 2017

xem lại đề