K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

Ta có: AB = 15cm ; AC = 20cm

=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)

BC = 25 => BC2 = 252 = 625 (cm) (2)

Từ (1) và (2) => AB2 + AC2 = BC2

Vậy tam giác ABC vuông tại A (đpcm).

8 tháng 1 2016

ta có: AB = 15cm ; AC = 20cm

=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)

BC = 25 => BC2 = 252 = 625 (cm) (2)

Từ (1) và (2) => AB2 + AC2 = BC2

Vậy tam giác ABC vuông tại A (đpcm).

a) vuông ; cân hoặc đều hihi!!!!!!!!!!!!!!

13 tháng 2 2017

Bài này ngoài dùng tỉ số lượng giác lớp 9 rồi tới pytago thì không biết dùng gì nữa :(

27 tháng 2 2020

a, xét tam giác ABH và tam giác ACK có : góc A chung

góc AKC = góc AHB = 90 

AB =AC do tam giác ABC cân tại A (gt)

=> tam giác ABH = tam giác ACK (ch-gn)

b, tam giác ABH = tam giác ACK (Câu a)

=> AK = AH (đn)

AB = AC (câu a)

AK + KB = AB

AH + HC = AC

=> BK = CH

xét tam giác OBK và tam giác OCH có : 

góc ABH = góc ACK do tam giác ABH = tam giác ACK (câu a)

góc BKO = góc CHO = 90

=> tam giác OBK = tam giác OCH (cgv-gnk)

8 tháng 3 2020

thank you bn

8 tháng 2 2021

Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)

                                        => AM là trung tuyến

Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)

                                      =>   AM là đường cao (TC các đường trong tam giác cân)

Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)

                              EM là đường cao (AM là đường cao, E thuộc AM)

=> Tam giác EBC cân tại E

M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Xét tam giác AMB vuông tại M (AM \(\perp BM\))

               AB= AM2 + BM2 (định lý Py ta go)

Thay số:  AB= 82 + 62

        <=> AB=  100

        <=> AB = 10 (cm)

Vậy AB = 10 (cm)

8 tháng 2 2021

Bài 1:

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AH2 = BH . HC (hệ thức lượng)

<=>    122  = 9 . HC

<=>    HC   = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)

Vậy HC = 16 (cm)

Ta có: BC = BH + HC = 9 + 16 = 25 (cm)

Xét ∆ABC vuông tại A, AH \(\perp\) BC:

Ta có: AB2 = BH . BC (hệ thức lượng)

<=>    AB2 = 9 . 25

<=>    AB2 = 225

<=>    AB   = 15 (cm)

Vậy AB = 15 (cm)

24 tháng 7 2021

a) Xét Δ ADB vuông  và ΔBHD vuông có:

             BD là cạnh chung

∠ ABD = ∠ HBD ( do BD là tia phân giác của ∠ BAC, H ∈ BC )

Do đó: Δ ADB = Δ BHD( ch - gn )

⇒ AD = DH ( hai cạnh tương ứng )

b) Xét Δ ADK và Δ HDC có

      AD=DH ( cmt )

∠ ADK = ∠ HDC ( đối đỉnh )

Vậy: Δ ADK = Δ HDC ( cgv - gn )

⇒ AD = DC ( 2 cạnh tương ứng )

c) Ta có: BK = BA + AK ( do B,A,K thẳng hàng )

              BC = BH + HC ( do B,H,C thẳng hàng )

mà BA = BH ( Δ BAD = ΔBHD)

và AK = HC ( Δ ADK = ΔHDC )

⇒ BK = BC ( 1 )

Xét Δ KBC có BK = BC  ( cmt )  ( 2 )

Từ ( 1 ) và ( 2 ):  ⇒  KBC cân tại B ( định nghĩa tam giác cân )