Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F 5 cm 12 cm
a) Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A ta có :
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=5^2+12^2\)
\(\Leftrightarrow BC^2=169\)
\(\Leftrightarrow BC=13\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác ta có : \(AB.AC=BC.AH\)
\(\Leftrightarrow AH=\frac{5.12}{13}=\frac{60}{13}\left(cm\right)\)
b) Áp dụng hệ thức lượng ta có \(AB^2=BH.BC\Leftrightarrow BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)
Do BE là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\frac{AE}{HE}=\frac{AB}{BH}=5\div\frac{25}{13}=\frac{13}{5}\)
Theo dãy tỉ số bằng nhau ta được :
\(\frac{AE}{13}=\frac{HE}{5}=\frac{AE+HE}{13+5}=\frac{AH}{18}=\frac{60}{13}\div18=\frac{10}{39}\)
\(\Rightarrow AE=\frac{10}{39}\times13=\frac{10}{3}\left(cm\right)\)
Mặt khác BF là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\frac{AF}{FC}=\frac{AB}{BC}=\frac{5}{13}\)
Theo dãy tỉ số bằng nhau ta được :
\(\frac{AF}{5}=\frac{FC}{13}=\frac{AF+FC}{5+13}=\frac{AC}{18}=\frac{2}{3}\)
\(\Rightarrow AF=\frac{2}{3}\times5=\frac{10}{3}\left(cm\right)\)
Xét \(\Delta AEF\)có \(AE=AF\left(=\frac{10}{3}cm\right)\)
\(\Rightarrow\Delta AEF\)cân tại A ( đpcm )
Vậy ...
hình,
A B C H E F 1 2 1 2 1
~~~
a/ A/dụng pitago vào tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2=5^2+12^2=169\Rightarrow BC=13\left(cm\right)\)
Xét ΔHBA và ΔABC có:
\(\left\{{}\begin{matrix}\widehat{H}=\widehat{A}=90^o\left(gt\right)\\\widehat{B}:chung\end{matrix}\right.\)
=>ΔHBA ~ ΔABC (g.g)
=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{5\cdot12}{13}\approx4,6\left(cm\right)\)
b/ Xét ΔABF và ΔHBE có:
\(\left\{{}\begin{matrix}\widehat{A}=\widehat{H}=90^o\left(gt\right)\\\widehat{B_1}=\widehat{B_2}\left(gt\right)\end{matrix}\right.\)
=> ΔABF ~ ΔHBE (g.g)
=> \(\widehat{F_1}=\widehat{E_2}\) (2 góc tương ứng)
mặt khác: \(\widehat{E_1}=\widehat{E_2}\)(đối đỉnh)
=> \(\widehat{F_1}=\widehat{E_1}\)
=> ΔAEF cân tại A (đpcm)
hình bạn tự vẽ nha vì muộn rùi!!!!
a, Ta có M là trung điểm của AB (tự chứng minh)
N là trung điểm của AC (tự chứng minh)
Từ trên => MN là đường trung bình của \(\Delta ABC\)(dhnb đường trung bình)
=> \(MN=\frac{1}{2}BC\)(t/c đường trung bình)
=> \(MN=\frac{1}{2}.10=5\left(cm\right)\)
b,Xét \(\Delta AMN\)và \(\Delta ABC\)
Có \(\widehat{A}\)chung
\(\frac{AM}{AB}=\frac{AN}{AC}\left(=\frac{1}{2}\right)\)
Từ trên => 2 tam giác đồng dạng theo TH (c.g.c)
Xét tam giac ABC,ta có
AB^2+AC^=12^2+5^2=144+25=169