Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AE+EC=AC
nên AE=15-9=6(cm)
Xét ΔABC có
AD/AB=AE/AC=2/5
Do đó: DE//BC
b: Xét ΔABM có DI//BM
nên DI/BM=AD/AB
=>DI/MC=2/5(1)
Xét ΔACM có IE//CM
nên IE/CM=AE/AC=2/5(2)
Từ (1) và (2) suy ra DI=EI
hay I là trung điểm của DE
a/ \(AE=AC-CE=15-9=6\) (cm)
\(\dfrac{AD}{AB}=\dfrac{4}{10}=\dfrac{2}{5}\)
\(\dfrac{AE}{AC}=\dfrac{6}{15}=\dfrac{2}{5}\)
\(\to\dfrac{AD}{AB}=\dfrac{AE}{EC}\) (ĐL Talet đảo)
\(\to DE//BC\)
b/ \(DI//BM\)
\(\to\dfrac{AD}{AB}=\dfrac{DI}{BM}\) (ĐL Talet đảo)
\(EI//CM\)
\(\to\dfrac{AE}{AC}=\dfrac{EI}{CM}\)
mà \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
\(\to\dfrac{DI}{BM}=\dfrac{EI}{CM}\)
mà \(BM=CM\)
\(\to DI=EI\) mà \(I\) là nằm giữa \(D,E\)
\(\to I\) là trung điểm \(DE\)
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
Giải
Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\) là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì
\(MI=KN=\frac{DE}{2}\left(1\right)\)
\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)
\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)
\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha
Xét ΔBDC có
M là trung điểm của BC
E là trung điểm của DB
Do đó: ME là đường trung bình của ΔBDC
Suy ra: ME//DC
Xét ΔAME có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
hay AI=IM
Hình tự vẽ.
a)C/m : CD=DE ; BM=MC;=> ME là đường trung bình của tam giác BDC.
=> BD // ME.
hay ID // ME mà AD=DE;=> ID là đường trung bình của tam giác AME.
=> I là trung điểm của AM.
b) Vì ID là đường trung bình của tam giác AME.
=> ID = 1/2 ME.(1)
Mà ME là đường trung bình của tam giác BDC.
=> ME=1/2 BD.(2)
Từ (1) và (2), suy ra:
ID=BD/4.