K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

a) BOC=180-(OBC+OCB)=180-(1/2.ABC+1/2.ACB)=180-[1/2(ABC+ACB)]=180-{1/2[180-BAC]}=180-1/2.120=180-60=120 độ

13 tháng 7 2019

A B C D E O F

a, tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (đl)

góc BAC  = 60 (gt)

=> góc ABC + góc ACB = 180 - 60 = 120     (1)

BD là phân giác của góc ABC (gt) => góc DBC = 1/2*góc ABC (tc)

CE là phân giác của góc ACB (gt) => ECB = 1/2*góc ACB (tc)

=> góc DBC + góc ECB = 1/2*góc ABC + 1/2*góc ACB = 1/2(góc ABC + góc ACB) và (1)

=> góc DBC + góc ECB = 1/2*120 = 60 

xét tam giác OBC có : góc OBC + góc BCO + góc BOC = 180 (đl)

=> góc BOC = 180 - 60 = 120

b,  góc BOC + góc BOE = 180 (kb) mà góc BOC = 120 (câu a)

=> góc BOE = 180 - 120 = 60   (2)

OF là phân giác của góc BOC (gt) 

=> góc BOF = 1/2*BOC = góc FOC (tc) mà góc BOC = 120 (câu a)

=> góc BOF = 1/2*120 = 60  = góc FOC   (3)

(2)(3) => góc BOF = góc BOE 

xét tam giác BOF và tam giác BOE có  : BO chung

góc ABO = EBO = góc FBO do BO là phân giác của góc ABC (gt)

=> tam giác BOF = góc BOE (g-c-g)

c, góc DOC = góc BOE (đối đỉnh) mà góc BOE = 60 (Câu b)

=> góc DOC = 60

góc FOC = 60 (câu b)

=> góc DOC = góc FOC 

xét tam giác DOC và tam giác FOC có : OC chung

góc FCO = góc DCO do OC là phân giác của góc BCA (gt)

=> tam giác DOC = tam giác FOC (g-c-g)

=> OD = OF (Đn)

tam giác OEB = tam giác OFB (câu b) => OE = OF (đn)

=> OE = OF = OD 

d, góc EOB + góc BOF = góc EOF 

mà góc EOB = góc BOF = 60

=> góc EOF = 60.2 = 120    (4)

góc FOC + góc OCD = góc FOD 

mà góc FOC = góc OCD = 60

=> góc FOD = 60.2 = 120   (5)

(4)(5) => góc FOD = góc EOF = 120

xét tam giác EOF và tam giác DOF có : OF chung

OE = OD (Câu c)

=> tam giác EOF = tam giác DOF (c-g-c)

=> EF = DF (đn)

=> tam giác EFD cân tại F (đn)       (6)

OE = OF => tam giác OEF cân tại O => góc OFE = (180 - góc EOF) : 2 

mà góc EOF = 120 (cmt)

=> góc EFO = (180 - 120) : 2 = 30

tương tự cm được góc OFD = 30 

mà góc OFD + góc EFO = góc EFD 

=> góc EFD = 30 + 30 = 60      và (6)

=> tam giác EFD đều (tc)

5 tháng 2 2017

cần vẽ hình 0 bạn

13 tháng 11 2017

k đúng mik nếu các bạn có thể nha!Cảm ơn các bạn^_^

30 tháng 11 2016

A B 60 C o I O D E x y

a)\(\Delta ABC\)có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\) (tổng 3 góc trong tam giác)

=>\(60^o+\widehat{ABC}+\widehat{ACB}=180^o\)=>\(\widehat{ABC}+\widehat{ACB}=120^o\)

BD là tia phân giác của góc ABC => \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}.\widehat{ABC}\)

CE là tia phân giác của góc ACB => \(\widehat{ACE}=\widehat{ECB}=\frac{1}{2}.\widehat{ACB}\)

=>\(\widehat{DBC}+\widehat{ECB}=\frac{1}{2}.\widehat{ABC}+\frac{1}{2}.\widehat{ACB}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\frac{1}{2}.120=60^o\)

\(\Delta BOC\) có: \(\widehat{DBC}+\widehat{BOC}+\widehat{ECB}=180^o\) (tổng 3 góc trong tam giác)

=>\(\widehat{BOC}+60^o=180^o\Rightarrow\widehat{BOC}=120^o\)

b) Góc ngoài tại đỉnh B của tam giác ABC kề bù với góc ABC <=>\(\widehat{ABC}+\widehat{CBx}=180^o\)

Góc ngoài tại đỉnh C của tam giác ABC kề bù với góc ACB<=>\(\widehat{ACB}+\widehat{BCy}=180^o\)

=>\(\widehat{ABC}+\widehat{CBx}+\)\(\widehat{ACB}+\widehat{BCy}=360^o\)=>\(\widehat{CBx}+\widehat{BCy}+120^o=360^o\)

=>\(\widehat{CBx}+\widehat{BCy}=240^o\)

BI là tia phân giác của góc CBx => \(\widehat{BCI}=\widehat{IBx}=\frac{1}{2}.\widehat{CBx}\)

CI là tia phân giác của góc BCy => \(\widehat{BCI}=\widehat{ICy}=\frac{1}{2}.\widehat{BCy}\)

=>\(\widehat{CBI}+\widehat{BCI}=\frac{1}{2}.\widehat{CBx}+\frac{1}{2}.\widehat{BCy}=\frac{1}{2}\left(\widehat{CBx}+\widehat{BCy}\right)=\frac{1}{2}.240^o=120^o\)

\(\Delta BCI\) có: \(\widehat{CBI}+\widehat{BCI}+\widehat{BIC}=180^o\) (tổng 3 góc trong tam giác)

=>\(120^o+\widehat{BIC}=180^o\Rightarrow\widehat{BIC}=60^o\)

Vậy ............................

Bạn kham khảo link này nhé.

Kết quả tìm kiếm | Học trực tuyến

10 tháng 11 2019

ĐÂY LÀ KÍ HIỆU GÓC NHA (^)

Vì 3 tam giác này có 3 góc bằng nhau :

⇒BACˆ×3=180⇒BAC^×3=180 độ

⇒BACˆ=60⇒BAC^=60 độ

⇒ABDˆ=30⇒ABD^=30 độ

⇒ABDˆ+BADˆ⇒ABD^+BAD^ = 90 độ

⇒ΔBAD⇒ΔBAD ⊥ D

⇒BD⇒BD ⊥⊥ ACAC

Vì CE là tia phân giác của BCAˆBCA^

⇒ECAˆ⇒ECA^ =30=30 độ

⇒EACˆ+ECAˆ=90⇒EAC^+ECA^=90 độ

⇒ΔAEC⊥E⇒ΔAEC⊥E

⇒EC⊥AB