K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

A C M B D E

Xét ΔABM và ΔACM , có :

AM là cạnh chung

BM = CM ( M là trung điểm của BC)

AB = AC ( gt )

=> ΔABM = Δ ACM ( c - c -c )

=> Góc BAM = CAM (2 góc tương ứng )

Vậy AM là tia phân giác của góc BAC

Ta có : MB + BD = MD

MC + CE = ME

Mà MC = MB , BD = CE => MD = ME

Xét ΔAMD và ΔAME ,có:

MD = ME ( c/m trên )

AM là cạnh chung

Góc DMA = góc AME ( ΔABM = ΔACM )

=> ΔADM = ΔAEM ( c - g - c )

=> Góc DAM = góc EAM ( 2 góc tương ứng )

Vậy AM là tia phân giác của góc DAE

 

 

2 tháng 11 2017

vì tam giác ABC cân có AM trug tuyến => AM cx là phân giác góc BAC 

Xét tam giác ABD và ACE có 

AB=AC

DB=CE 

góc ABD=ACE = 180 độ - góc B 

=> 2 tam giác = nhau

=> góc DAB=ECA  mà góc BAM =MAC (cmt)

=> AM là pg góc DAE

a) Xét ΔABDΔABD và ΔACEΔACE có:

AB=ACAB=AC (do ΔABCΔABC cân đỉnh A)

ˆABD=ˆACEABD^=ACE^ (cùng +45o+45o=180^o)

BD=CEBD=CE (giả thiết)

⇒ΔABD=ΔACE⇒ΔABD=ΔACE (c.g.c)

⇒AD=AE⇒AD=AE (hai cạnh tương ứng)

⇒ΔADE⇒ΔADE cân đỉnh A

b) Ta có: BD+BM=CE+CM⇒DM=EMBD+BM=CE+CM⇒DM=EM

Xét ΔAMDΔAMD và ΔAMEΔAME có:

AD=AEAD=AE (cmt)

AMAM chung

DM=EMDM=EM (cmt)

⇒ΔAMD=ΔAME⇒ΔAMD=ΔAME (c.c.c)

⇒ˆMAD=ˆMAE⇒MAD^=MAE^ (hai góc tương ứng)

⇒AM⇒AM là phân giác ˆDAEDAE^ (đpcm)

Ta có ΔAMD=ΔAME⇒ˆAMD=ˆAMEΔAMD=ΔAME⇒AMD^=AME^

Mà ˆAMD+ˆAME=180oAMD^+AME^=180o

⇒ˆAMD=ˆAME=180o2=90o⇒AMD^=AME^=180o2=90o

⇒AM⊥DE⇒AM⊥DE (đpcm)

c) Xét ΔΔ vuông ABHABH và ΔΔ vuông ACKACK có:

AB=ACAB=AC (gt)

ˆBAH=ˆCAKBAH^=CAK^ (do ΔABD=ΔACEΔABD=ΔACE)

⇒ΔABH=ΔACK⇒ΔABH=ΔACK (ch-gn)

⇒BH=CK⇒BH=CK (hai cạnh tương ứng) (đpcm)

CHÚC BẠN HỌC GIỎI NHÉ THEO DÕI CHÉO NHA?

27 tháng 11 2016

A B C D E M 1 2 1 2

Giải:
a) Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) cân tại A

\(\Rightarrow\widehat{B_2}=\widehat{C_1}\)

\(\Rightarrow180^o-\widehat{B_2}=180^o-\widehat{C_1}\)

hay \(\widehat{DBE}-\widehat{B_2}=\widehat{ECD}-\widehat{C_1}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_2}\) (*)

Xét \(\Delta ABD,\Delta ACE\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{B_1}=\widehat{C_2}\) ( theo (*) )

\(BD=CE\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right)\)

\(\Rightarrow AD=AE\) ( cạnh t/ứng ) (đpcm)

b) Ta có: \(BM=MC\left(=\frac{1}{2}BC\right)\)

\(BD=CE\left(gt\right)\)

\(\Rightarrow BM+BD=MC+CE\)

\(\Rightarrow MD=ME\) (**)

Xét \(\Delta DAM,\Delta MAE\) có:
\(AD=AE\) ( theo phần a )

\(MD=ME\) ( theo (**) )

\(AM\): cạnh chung

\(\Rightarrow\Delta DAM=\Delta MAE\left(c-c-c\right)\)

\(\Rightarrow\widehat{DAM}=\widehat{MAE}\) ( góc t/ứng )

\(\Rightarrow AM\) là tia phân giác của \(\widehat{DAE}\left(đpcm\right)\)

Vậy...

27 tháng 11 2016

Ta có hình vẽ

A B C D E M a/ Ta có: \(\widehat{ABC}\)=\(\widehat{ACB}\) (vì \(\Delta\)ABC cân) (*)

\(\widehat{ABC}\)+\(\widehat{ABD}\)=1800 (kề bù) (**)

\(\widehat{ACB}\)+\(\widehat{ACE}\)=1800 (kề bù) (***)

Từ (*),(**),(***) => \(\widehat{ABD}\) = \(\widehat{ACE}\) (1)

Ta có: AB = AC (GT) (2)

BD = CE (GT) (3)

Từ (1),(2),(3) => tam giác ABD = tam giác ACE

=> AD = AE (2 cạnh tương ứng) (đpcm)

b/ Xét tam giác AMD và tam giác AME có:

AD = AE (đã chứng minh ở câu a)

AM: cạnh chung

\(\begin{cases}BM=MC\\BD=CE\end{cases}\)\(\Rightarrow\) MB+BD=MC+CE \(\Rightarrow\)MD = ME

=> tam giác AMD = tam giác AME (c.c.c)

=> \(\widehat{DAM}\)=\(\widehat{EAM}\) (2 góc tương ứng)

=> AM là phân giác góc DAE (đpcm)

25 tháng 12 2016

.

25 tháng 12 2016

.

7 tháng 1 2022

A, xét tam giác ABD và tam giác ACE có

AB = AC ( tam giác ABC cân tại A)

MK Góc ABD + ABC = 180 độ

  lại có góc ACE + ACB = 180 độ

mà góc ABC = ACB(tam giác ABC cân tại A)

=> Góc ABD =ACE

BD = CE ( GT )

nên tam giác ABD = tam giác ACE (C-G-C)

=> góc ADB = góc AEC 

=> tam giác AED cân tại A

b,xét tam giác DAM và tam giác EAM có

AD = AE ( cm a, )

AM cạnh cung

mk có MB=MC(M TĐ BC) (1)

ta lại có BD = CE ( GT) (2)

từ (1) và (2) ta có

DB+BM =CE + MC

hay DM = ME

nên tam giác DAM = tam giác EAM ( C-C-C )

=> góc MAD = MAE 

=>AM ph/G góc DAE

c, xét tam giác BAH và tam giác CAK có

góc BHA=CKA ( = 1 vuông )

AC =AB   ( tam giác ABC cân tại A)

góc BAH = CAK ( tam giác ABD = tam giác ACE)

nên tam giác BAH = tam giác CAK ( cạnh huyền góc nhọn )

=> BH = CK