K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2020

a,Xét tam giác ABM với ACM có; AM chung AB=AC(gt) BM=MC(gt) =>tam giác ABM=ACM (c.c.c)(đpcm) b,Vì 2 tam giác trên bằng nhau =>AMB=AMC Mà 2 góc kề bù =>góc AMB=AMC=90 độ =>AM vuông góc BC(đpcm) c,Xét tam giác DBM vs DCM có:DM chung DB=DC(gt) BM=MC(gt) =>tam giác DBM=DCM(c.c.c) Mà 2 góc kề bù=>DBM=DCM=90 độ =>3 điểm A,M,D thẳng hàng(đpcm)

a: Ta có: ΔABC cân tại A

mà AN là đường trung tuyến

nên AN là đường cao

b: Ta có: DC=DB

nên D nằm trên đường trung trực của BC(1)

Ta có: NB=NC

nên N nằm trên đường trung trực của BC(2)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,N,D thẳng hàng

A B C F M D E

Bài làm

a) Xét tam giác AMB và tam giác FMC có:

AM = MF

\(\widehat{AMB}=\widehat{FMC}\)( hai góc đối nhau )

BM = MC 

=> Tam giác AMB = tam giác FMC ( c.g.c )

=> \(\widehat{BAM}=\widehat{CFM}\)( hai góc t/ứng )

Mà hai góc này so le trong

=> AB // CF

# Học tốt #

25 tháng 9 2015

A B C D E

a) Ta có AD // BC ; AE // BC => AD // AE // BC

Theo tiên đề EuClid: Qua điểm A nằm ngoài đường thẳng BC có duy nhất một đường thẳng // BC => AD và AE trùng nhau Hay A; D; E thẳng hàng

b) AD// BC => góc DAC = ACB (So le trong)

AE // BC =>góc  EAB = ABC (So le trong)

Ta có: ABC + BAC + ACB = EAB + BAC + DAC = 180o

vậy...

 

8 tháng 12 2019

Quất luôn !!

A B C D M I x

a) 

Vì tam giác ABC cân tại A ( AB = AC )

Mà M là trung điểm của BC

=> AM vuông góc với BC

Xét tam giác AMB ( góc AMB = 90 độ ) và tam giác AMC ( góc AMC = 90 độ ) ta có

AB = AC

BM = MC ( GT )

=> tam giác AMB = tam giác AMC ( Cạnh huyền – cạnh góc vuông )

b) không có yêu cầu 

c) Xét tam giác AMB ( góc  AMB  = 90o ) Và tam giác DMC ( góc DMC = 90 độ )

BM = MC 

AM = MD ( GT )

=> Tam giác AMB = tam giác DMC ( 2 cạnh góc vuông )

=> Góc ABM = góc MCD ( 2 cạnh tương ứng )

MÀ 2 góc ở vị trí so le trong 

=> AB // CD 

d) Xét tam giác ABC và tam giác CIA có :

AC : cạnh chung 

Góc ACB = góc CAI ( BC // Ax )

BC = AI 

=> Tam tam giác ABC = tam giác CIA ( c - g - c )

=> Góc BAC = góc ACI ( 2 cạnh tương ứng )

MÀ 2 góc ở vị trí sole trong 

=> AB // CI 

MÀ CD // AB

=> 3 điểm D ; I ;C thẳng hàng

12 tháng 3 2019

A B C D E M I N F

a) Xét \(\Delta\)ABD và \(\Delta\)ACE có:AD=AC,^DAB=^EAC(cùng bằng 90 độ-^BAC),AB=AE => \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

\(\Rightarrow BD=CE\)

b) Xét \(\Delta\)AMB và \(\Delta\)NMC có: AM=MN,^AMB=^NMC,MB=MC => \(\Delta AMB=\Delta NMC\left(c-g-c\right)\)

\(\Rightarrow\widehat{MAB}=\widehat{NMC}\Rightarrow AB//NC,AB=NC\)

\(\Rightarrow\widehat{ACN}+\widehat{BAC}=180^0\) Mà \(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}+\widehat{BAC}=180^0\)

\(\Rightarrow\widehat{ACN}+\widehat{BAC}=\widehat{DAB}+\widehat{BAC}+\widehat{EAC}+\widehat{BAC}\)

\(\Rightarrow\widehat{ACN}=\widehat{DAE}\)

Xét \(\Delta\)ADE và \(\Delta\)CAN có:AD=AC,^ACN=^DAE,AE=NC => \(\Delta ADE=\Delta CAN\left(c-g-c\right)\)

c)

Gọi F là giao điểm của DE và AB.

Ta có:^CNM=^AED => ^FAI=^AED.Lại có:\(\widehat{FAI}+\widehat{IAE}=90^0\Rightarrow\widehat{AED}+\widehat{IAE}=90^0\Rightarrow\widehat{AIE}=90^0\Rightarrow AN\perp DE\)

Áp dụng định lý Pythagore vào tam giác vuông AIE có:\(AE^2=AI^2+IE^2\)

\(\Rightarrow DI^2+AE^2=AI^2+IE^2+DI^2=AD^2+IE^2\left(đpcm\right)\)

P/S:hình vẽ kí hiệu góc hơi xấu tí,thông cảm!