K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

loading...ABC có:

AB = AC (gt)

⇒ ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

⇒ ∠DBC = ∠ECB

Do AB = AC (gt)

AD = AE (gt)

⇒ BD = AB - AD = AC - AE = CE

Xét ∆DBC và ∆ECB có:

DB = EC (cmt)

∠DBC = ∠ECB (cmt)

BC là cạnh chung

⇒ ∆DBC = ∆ECB (c-g-c)

⇒ ∠BDC = ∠CEB (hai góc tương ứng)

⇒ ∠BDO = ∠CEO

Do ∆DBC = ∆ECB (cmt)

⇒ ∠BCD = ∠CBE (hai góc tương ứng)

Mà ∠ACB = ∠ABC (cmt)

⇒ ∠ECO = ∠ACB - ∠BCD

= ∠ABC - ∠CBE

= ∠DBO

Xét ∆BOD và ∆COE có:

∠DBO = ∠ECO (cmt)

BD = CE (cmt)

∠BDO = ∠CEO (cmt)

⇒ ∆BOD = ∆COE (g-c-g)

⇒ OD = OE (hai cạnh tương ứng)

Xét ∆ADO và ∆AEO có:

AD = AE (gt)

AO là cạnh chung

OD = OE (cmt)

∆ADO = ∆AEO (c-c-c)

⇒ ∠DAO = ∠EAO (hai góc tương ứng)

⇒ AO là tia phân giác của ∠DAE

Hay AO là tia phân giác của ∠BAC

26 tháng 12 2021

a: Xét ΔABE và ΔACD có

AB=AC

\(\stackrel\frown{A}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

10 tháng 7 2019

A B C D E O H

Cm: a) Xét t/giác ABE và t/giác ACD

có: AB = AC (gt)

  \(\widehat{A}\) :chung

  AE = AD (gt)

=> t/giác ABE = t/giác ACD (c.g.c)

=> BE = CD (2 cạnh t/ứng)

b)Ta có: AD + DB = AB

  AE + EC = AC

mà AD = AE (gt) ; AB = AC (gt)

=> BD = EC

Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)

          \(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)

mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)

=> \(\widehat{BDC}=\widehat{BEC}\)

Xét t/giác BOD và t/giác COE

có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)

  BD = EC (cmt)

  \(\widehat{BDO}=\widehat{OEC}\) (cmt)

=> t/giác BOD = t/giác COE (g.c.g)

c) Xét t/giác ABO và t/giác ACO

có: AB = AC (gT)

  OB = OC (vì t/giác BOD = t/giác COE)

 AO  : chung

=> t/giác ABO = t/giác ACO (c.c.c)

=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)

=> AO là tia p/giác của \(\widehat{A}\)

d) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

 \(\widehat{BAH}=\widehat{CAH}\)(cmt)

 AH : chung

=> t/giác ABH = t/giác ACH (c.g.c)

=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)

Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)

=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)

30 tháng 6 2023

a)Xét ΔABE và ΔACD có:

   AB=AC(GT)

  góc BAC chung

  AE=AD(GT)

=>ΔABE=ΔACD(C.G.C)

⇒BE=CD(2 CẠNH TƯƠNG ỨNG)

   góc ABE= góc ACD( 2 góc tướng ứng)

b)Có:AB=AC(GT)

Mà:AD=AE(GT)

=>AB-AD = AC-AE

=>BD=CE

Xét ΔBMD và ΔCME có:

   góc ABE= góc ACD(CMT)

    BD=CE(CMT)

   góc BMD=CME(2 góc đối đỉnh)

=>ΔBMD=ΔCME(ch-gn)

 =>BM=CM(2 cạnh tương ứng)

c)Xét ΔBAM và ΔCAM có:

   AB=AC(GT)

   AM chung

  BM=CM(CMT)

=>ΔBAM=ΔCAM(c.c.c)

 =>góc BAM= góc CAM(2 góc tướng ứng)

=>AM là tia phân giác góc BAC(ĐPCM)

 

30 tháng 6 2023

A B C D E M

(HÌNH VẼ MINH HỌA)

9 tháng 12 2018

a) ta có : AB=AC

Suy ra tam giac ABC cân

Xét tam giac ABE và tam giác ADE ta có

AB=AC(gt)

góc B=gócC(tính chất tam giác cân)

AD=AE(gt)

Suy ra tam giác ABE=tam giac ACD( c.g.c)

Suy ra BE=CD( hai cạnh tương ứng )

b) Ta có O nằm trên cạnh DC và BE

Suy ra  DO=EO( DC=BE)

XÉT tam giác ADO và tam giác AEO ta có

AD=AE(gt)

AOchung 

DO=EO( chứng minh trên)

Suy ra tam giác AOD = tam giác AEO(c.c.c)

Suy ra góc A1=A2 ( 2 góc tương ứng)

Suy ra AOlà tia phân giác của góc A

a: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔDBC và ΔECB có 

DB=EC

DC=EB

CB chung

Do đó:ΔDBC=ΔECB

Suy ra: \(\widehat{ODB}=\widehat{OEC}\)

Xét ΔODB và ΔOEC có 

\(\widehat{ODB}=\widehat{OEC}\)

BD=CE

\(\widehat{OBD}=\widehat{OCE}\)

Do đó: ΔODB=ΔOEC

c: Ta có: ΔODB=ΔOEC

nên OB=OC

Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

Ta có: ΔABC cân tại A

mà AO là đường phân giác

nên AO là đường cao

Bài 1: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 2: 

a: Xét ΔABE và ΔACD có

AB=AC
\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔBDC và ΔCEB có

BD=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

DO đó: ΔBDC=ΔCEB

Suy ra: \(\widehat{ODB}=\widehat{OEC}\)

Xét ΔODB và ΔOEC có 

\(\widehat{ODB}=\widehat{OEC}\)

BD=CE

\(\widehat{DBO}=\widehat{ECO}\)

Do đó: ΔODB=ΔOEC