K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DD
Đoàn Đức Hà
Giáo viên
1 tháng 7 2021
a) Có \(BC^2=15^2=225\)
\(AB^2+AC^2=9^2+12^2=81+144=225\)
do đó \(BC^2=AB^2+AC^2\)
Theo định lí Pythaogre đảo suy ra tam giác \(ABC\)vuông tại \(A\).
b) \(AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2\left(cm\right)\)
\(HB=\frac{AB^2}{BC}=\frac{9^2}{15}=5,4\left(cm\right)\)
\(HC=BC-HB=15-5,4=9,6\left(cm\right)\)
1 tháng 7 2021
a)ta có:AB^2+AC^2=9^2+12^2=225
BC^2=15^2=225
=>AB^2+AC^2=BC^2
=>Tam giác ABC vuông tại A(theo định lý Pytago đảo)
a) Xét tam giác ABC có:
\(\left\{{}\begin{matrix}AB^2+AC^2=9^2+12^2=225\\BC^2=15^2=225\end{matrix}\right.\)
\(\Rightarrow AB^2+AC^2=BC^2\)
=> Tam giác ABC vuông tại A(Pytago đảo)
b) Áp dụng tslg trong tam giác ABC vuông tại A:
\(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\\sinB=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\widehat{C}\approx37^0\\\widehat{B}\approx53^0\end{matrix}\right.\)
c) Áp dụng HTL:
\(AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)
\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Xét tam giác ABC vuông tại A có Ah đường cao
\(\Rightarrow AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)
\(\Rightarrow AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\)
\(\Rightarrow HC=BC-BH=15-5,4=9,6\left(cm\right)\)