K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔBAC có \(BC^2=AB^2+AC^2\)

nên ΔBAC vuông tại A

b: \(VT=BD^2+DH^2+HC^2\)

\(=BH^2+HC^2\)

\(VP=CE^2+EH^2+HB^2=BH^2+HC^2=VT\)

10 tháng 3 2020

hình chắc có rồi

tam giác BEH vuông tại E => BE^2 + HE^2 = BH^2 (pytago)

HE = DH  (câu b)

=> BE^2 + HD^2 = BH^2   (1)

Tam giác BHC vuông tại H => BH^2 = BC^2 - HC^2 (pytago)

HC = HA (Câu a)

=> BH^2 = HC^2 - AH^2  và (1)

=> BE^2 + DH^2 = BC^2 - AH^2

a) Xét ΔABH và ΔCBH có :

AHBˆ=CHBˆ=90oAHB^=CHB^=90o

BA = BC ( ΔABC cân ở A )

Aˆ=CˆA^=C^ ( ΔABC cân ở B )

=> ΔABH = ΔCBH ( c.h-g.n )

=> HA = HC ( 2 cạnh tương ứng )

b) Do ΔABH = ΔCBH ( c/m a )

=> ABHˆ=CBHˆABH^=CBH^ ( 2 góc tương ứng )

hay DBHˆ=EBHˆDBH^=EBH^

+) ΔBDH và ΔBEH có :

BDHˆ=BDHˆ=90oBDH^=BDH^=90o

DBHˆ=EBHˆ(cmt)DBH^=EBH^(cmt)

BH là cạnh chung

=> ΔBDH = ΔBEH ( c.h-g.n )

=> HE = HD ( 2 cạnh tương ứng )

c) Do ΔBDH = ΔBEH ( c/m b )

=> BD = BE ( 2 cạnh tương ứng )

=> ΔBDE cân ở B

d) Do ΔBHE vuông ở E ; áp dụng định lí Pi-ta-go , ta có :

BE2 + HE2 = BH2

Mà HE = HD (c/m b )

=> BE2 + HD= BH2 (*)

+) Mặt khác , ΔBCH vuông ở H , áp dụng định lí Pi-ta-go , ta có :

BC= BH2 + HC2

=> BC2HC2=BH2BC2−HC2=BH2

mà HC = HA ( c/m a )

=> BC2HA2=BH2BC2−HA2=BH2 (**)

Từ (*) và (**)

=>  BE2+HD2=BC2HA2(=BH2)BE2+HD2=BC2HA2(=BH2)

8 tháng 4 2018

help me

9 tháng 4 2018

a) Xét tam giác vuông ADB và tam giác vuông ACE có:

Góc A chung

AB = AC (gt)

\(\Rightarrow\Delta ABD=\Delta ACE\)   (Cạnh huyền - góc nhọn)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)

Xét tam giác vuông AEH và tam giác vuông ADH có:

Cạnh AH chung

AE = AD (cmt)

\(\Rightarrow\Delta AEH=\Delta ADH\)   (Cạnh huyền - cạnh góc vuông)

\(\Rightarrow HE=HD\)

c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.

Lại có AM cũng là đường cao nên AM đi qua H.

d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:

\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)   

Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)

Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)

\(=3EC^2+2EA^2+BC^2\).

14 tháng 3 2017

bằng1

14 tháng 3 2017

A B C E D M I HÌNH NÈ

Bài 12.Cho tam giác ABC có AB>AC.Vẽ AH vuông góc BC.CMR AB2-AC2=HB2-HC2Bài 13.Cho tam giác ABC vuông tại A.Vẽ AH vuông góc BC.Biết AH=1.CMR BC2=HB2+HC2+2Bài 14.Cho tam giác ABC vuông cân tại A,AB=1.Qua A vẽ đường thẳng xy bất kì.Vẽ AH và BK cùng vuông góc xy.CMRa)HB=AK                  b)Tính BH2+CK2Bài 15.Cho tam giác ABC vuông tại A,AB=6,góc B=30 độ.Tia phân giác góc C cắt AB tại D.Tính AB,ADBài 16.Cho tam giác ABC vuông...
Đọc tiếp

Bài 12.Cho tam giác ABC có AB>AC.Vẽ AH vuông góc BC.CMR AB2-AC2=HB2-HC2

Bài 13.Cho tam giác ABC vuông tại A.Vẽ AH vuông góc BC.Biết AH=1.CMR BC2=HB2+HC2+2

Bài 14.Cho tam giác ABC vuông cân tại A,AB=1.Qua A vẽ đường thẳng xy bất kì.Vẽ AH và BK cùng vuông góc xy.CMR

a)HB=AK                  b)Tính BH2+CK2

Bài 15.Cho tam giác ABC vuông tại A,AB=6,góc B=30 độ.Tia phân giác góc C cắt AB tại D.Tính AB,AD

Bài 16.Cho tam giác ABC vuông cân tại A.Kẻ 1 đường thẳng d qua A.Từ B,C kẻ BH,CE vuông góc d(H,E nằm trên d).Chứng minh rằng tổng BH2+CE2 không phụ thuộc vị trí d

Bài 17.Cho O là điểm tùy ý nằm trong tam giác ABC.Vẽ OA1,OB1,OC1 lần lượt vuông góc với BC,CA,AB.CMR AB12+BC12+CA12=AC12+BA12+CB12

Bài 18.Cho tam giác ABC vuông tại A.Kẻ AH vuông góc BC(H nằm trên BC).Điểm D nằm giữa A và H.Trên tia đối của tia HA,lấy điểm E sao cho HE=AD.Đường thẳng vuông góc AH tại D cắt AC tại F.Chứng minh EB vuông góc EF

1
6 tháng 2 2017

B12:

Có:Tam giác ABH vuông tại H

     ________ACH__________

=>AB2-AC2=(AH2+BH2)-(AH2+CH2)=BH2-CH2.

Câu 1: cho tam giác ABC(AB>AC),M là trung điểm của BC.Đường thẳng Vuông góc với tia phân giác của góc A tại M cắt cạnh AB,AC lần lượt tại E và F.Chứng minh:a) EH=HFb) 2BME=ACB - Bc) FE2 :4+AH2=AE2d) BE=CFCâu 2: Cho tam giác ABC có các góc nhỏ hơn 120 độ.ở phía ngoài tam giác ABC,vẽ các tam giác đều ABD và ACEa) Chứng minh DC=BEb) Gọi I là giao điểm Của DC và BE.Tính số đo góc BICCâu 3: cho tam giác ABC vuông...
Đọc tiếp

Câu 1: cho tam giác ABC(AB>AC),M là trung điểm của BC.Đường thẳng Vuông góc với tia phân giác của góc A tại M cắt cạnh AB,AC lần lượt tại E và F.Chứng minh:

a) EH=HF

b) 2BME=ACB - B

c) FE:4+AH2=AE2

d) BE=CF

Câu 2: Cho tam giác ABC có các góc nhỏ hơn 120 độ.ở phía ngoài tam giác ABC,vẽ các tam giác đều ABD và ACE

a) Chứng minh DC=BE

b) Gọi I là giao điểm Của DC và BE.Tính số đo góc BIC

Câu 3: cho tam giác ABC vuông tại A.Kẻ AH vuông với BC (H không thuộc BC)

a) chứng minh: AB2+CH2=AC2+BH2

b) biết AB=6cm, AC=8cm.Tính AH,HB,HC

Câu 4: Cho ba điểm B,H,C thẳng hàng,BC=13cm,BH=4cm,HC=9cm.Từ H vẽ tia Hx vuông góc với đường thẳng BC.Lấy điểm A thuộc Tia Hx sao cho HA=6cm

a) tang giác ABC là tam giác gì?chứng minh điều đó?

b) Trên tia HC,Lấy HD=HA.Từ D vẽ đường thẳng song song với AH cắt AC tại E.Chứng minh: AE=AB

(bài tập tết: anh chị giải hộ với.viết lời giải ra dùm em luôn nha.Cảm ơn mọi người nhiều)


 

5
5 tháng 11 2016

Khó qá

10 tháng 2 2017

Chép dài vầy là tút