Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AD=AB-BD=6(cm)
=>AD/AB=3/4
AE/AC=9/12=3/4
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
Do đó:ΔADE\(\sim\)ΔABC
a: AD/AB=3/4
AE/AC=3/4
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng vơi ΔABC
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
a) Ta có : AD + DB = AB ( vì D nằm trên cạnh AB)
=> AD + 2 = 8
=> AD = 6cm
Do đó : ADAB=68=34����=68=34
AEAC=912=34����=912=34
=> ADAB=AEAC=34����=����=34
b) Xét ΔADEΔ��� và ΔABCΔ��� có :
ˆA�^ chung
ADAB=AEAC����=����
=> ΔADE∽ΔABC(c.g.c)Δ���∽Δ���(�.�.�)
c) Vì IA�� là đường phân giác của ΔABCΔ��� nên
=> ABAC=IBIC=812=23����=����=812=23
Mà ADAB=AEAC����=���� (ΔADE∽ΔABC(cmt))(Δ���∽Δ���(���)) ⇒ABAC=ADAE=23⇒����=����=23
=>IBIC=ADAE⇒IB⋅AE=IC⋅AD(đpcm)����=����⇒��⋅��=��⋅��(đ���)
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng với ΔABC