Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
Vì \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)
để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy.....
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)
x O y A B C
a) Ta có OA là tia phân giác của góc xOy
=>\(\widehat{COA}=\widehat{AOB}=\dfrac{xOy}{2}\)
\(\Rightarrow\widehat{COA}=\widehat{AOB}=\dfrac{60}{2}\)
\(\Rightarrow\widehat{COA}=\widehat{AOB}=30^0\)
b) Ta có \(OB//AC\)\(\Rightarrow\widehat{AOB}=\widehat{OAC}=30^0\)( 2 góc so le trong )
\(OC//AB\Rightarrow\widehat{OAC}=\widehat{BAO}=30^0\)( 2 góc so le trong )
c) Vì \(\widehat{OAC}=\widehat{BAO}=30^0\Rightarrow AO\)là phân giác của \(\widehat{BAC}\)
Ta có:
(\(\dfrac{a}{b}\))3=\(\dfrac{1}{8000}\)
\(\Rightarrow\)(\(\dfrac{a}{b}\))3=(\(\dfrac{1}{20}\))3
\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{1}{20}\)
Theo tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{1}\)=\(\dfrac{b}{20}\)=\(\dfrac{a+b}{1+20}\)=\(\dfrac{42}{21}\)=2
\(\Rightarrow\)b=2.20=40
Vậy b=40
Học tốt!
thực sự là mình không biết vẽ hình
Chứng minh
a, Xét \(\Delta ABE\) và \(\Delta DBE\) có
BE chung
\(\widehat{BAE}=\widehat{BDE}\) (=1v)
BA = BD (gt)
\(\Rightarrow\Delta ABE=\Delta DBE\left(ch-cgv\right)\)
b, \(\Delta ABE=\Delta DBE\) (câu a )
\(\Rightarrow\widehat{ABE}=\widehat{DBE}\) (hai gó tương ứng)
\(\Rightarrow EA=ED\) (hai cạnh tương ứng) (1)
mà \(\Delta EDC\) vuông tại D
\(\Rightarrow EC>ED\) (2)
Từ (1) và (2) \(\Rightarrow EC>EA\)
Gọi N là giao điểm của AD và BE
Xét \(\Delta ABN\) và \(\Delta DBN\) có :
BA = BD (gt)
\(\widehat{ABN}=\widehat{DBN}\) (c/m trên)
BN chung
\(\Rightarrow\Delta ABN=\Delta DBN\) (c.g.c)
\(\Rightarrow AN=ND\) (hai cạnh tương ứng) (3)
và \(\widehat{ANB}=\widehat{DNB}\) (hai góc tương ứng)
mà \(\widehat{ANB}+\widehat{DNB}=180^O\)
\(\Rightarrow\widehat{ANB}=\widehat{DNB}\) (=1v) (4)
Từ (3) và (4) \(\Rightarrow BE\) là đường trung trực của AD
a) xét 2 tam giac vuong ABE va DBE co
AB = BD (gt)
BE canh chung
suy ra: tam giac ABE = tam giac DBE (ch-cgv)
b) tu cau a) Tam giac ABE = tam giac DBE
Suy ra :AE = DE (2 canh tuong ung) (1)_
trong tam giác EDC vuông tại D
suy ra : EC > DE (canh huyen lon hon cach goc vuong ) (2)
Tu (1) va (2) suy ra: EC >EA
Ta co : AE=ED (cmt)
suy ra: E thuộc đường trung trực của AD (3)
ta có:AB=BD(gt)
suy ra: B thuoc duong trung truc AD (4)
tu (3) va (4) suy ra: BE la duong trung truc cua AD
A B C E D M
A B C E D F 1 2
a) Vì BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 100
Nên AB2 + AC2 = BC2
Do đó: \(\Delta ABC\) vuông tại A
b) Xét hai tam giác vuông ABD và EBD có:
BD: cạnh huyền chung
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
Vậy: \(\Delta ABD=\Delta EBD\left(ch-gn\right)\)
Suy ra: DA = DE (hai cạnh tương ứng)
c) \(\Delta DAF\) vuông tại A
=> DF > DA (đường vuông góc ngắn hơn đường xiên)
Mà DA = DE
Do đó: DF > DE (đpcm)
d) Xét hai tam giác vuông ABC và EBF có:
AB = EB (\(\Delta ABD=\Delta EBD\))
\(\widehat{B}\): góc chung
Vậy: \(\Delta ABC=\Delta EBF\left(cgv-gn\right)\)
\(\Rightarrow\) BF = BC (hai cạnh tương ứng)
\(\Rightarrow\) \(\Delta BFC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường trung trực của FC
Do đó: BD là đường trung trực của đoạn thẳng FC (đpcm).
a) Ta có :
\(6^2+8^2=10^2\\ \Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( Định lí Pi-ta-go đảo )
b) Xét \(\Delta DBA\) và \(\Delta DBE\),có :
Chung cạnh BD
\(\widehat{DBA}=\widehat{DBE}\)( BD là tia phân giác )
\(\Rightarrow\Delta BDA=\Delta BDE\left(ch-gn\right)\\ \Rightarrow DA=DE\)