Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
chịu................................................................................ ko hiểu
Hình tự kẻ nghen :3333
a) xét tam giác ABD và tam giác EBD có
B1= B2 ( BD là p/g của góc ABC)
BD chung
BAD=BED(=90 độ)
=> tam giác BAD= tam giácBED (ch-gnh)
b) từ tam giác BAD = tam giác BED=> AB=BE ( hai cạnh tương ứng)
=> tam giác BAE cân tại B
c) vì tam giác BAE cân và góc ABC =60 độ=> tam giác BAE đều=> ABC=BAE=BEA=60 độ=> AE=AB=BE= 5 cm
ta có góc BAC= BAE+EAC
=> EAC= BAC-BAE
=>EAC=90 độ -60 độ=30 độ
ta có ABC+BAC+ACB=180 độ ( tổng 3 góc trong tam giác)
=> ACB= 180 độ-( 90 độ + 60 độ)
=> ACB= 30 độ
ta có ACB=EAC= 30 độ => tam giác AEC cân E => AE=EC=> AE= EC=AB=EB= 5cm
ta có BE+EC= BC=> BC= 5cm =5cm = 10cm
-Lưu ý: Chỉ mang tính chất tóm tắt bài làm, bạn không nên trình bày theo nhé!
a) △ABD và △EBD có: \(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác của \(\widehat{ABC}\)) ; BD là cạnh chung ; \(\widehat{BAD}=\widehat{BED}=90^0\)
\(\Rightarrow\)△ABD=△EBD (c-g-c).
b) △ABD=△EBD (cmt) \(\Rightarrow AB=EB\) \(\Rightarrow\)△ABE cân tại B mà \(\widehat{ABC}=60^0\)
\(\Rightarrow\)△ABE đều.
c) \(\widehat{BAE}+\widehat{EAC}=90^0\Rightarrow60^0+\widehat{EAC}=90^0\Rightarrow\widehat{EAC}=30^0\)
\(\widehat{ABE}+\widehat{ACE}=90^0\Rightarrow60^0+\widehat{ACE}=90^0\Rightarrow\widehat{ACE}=30^0=\widehat{EAC}\)
\(\Rightarrow\)△AEC cân tại E. \(\Rightarrow AE=EC=AB=BE\)
\(\Rightarrow\)E là trung điểm BC và \(AB=\dfrac{1}{2}BC\)
\(\Rightarrow BC=10 \left(cm\right)\)
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: góc C=180-50-60=70 độ
Xét ΔABC có góc A<góc B<góc C
nên BC<AC<AB
a) +Xét tam giác ABD :
ta có góc B = 60* ,góc BAD = 60*
mà góc B + góc BAD + ADB = 180* ( tổng 3 góc )
=> góc ADB = 60*
=> tam giac ABD là tam giác đều ( mỗi góc = 60*) => AB = BD = AD = 7cm
ta có H là trung diem BD => AH là duong trung tuyến,là tia phan giac goc BAD,là duong cao cùa tam giac ABD ( tam giac ABD đều ) => HD = HB = 1/2 BD = 3.5cm
+áp dụng định lí pitago vào tam giác ABH vuong tai H có AB = 7cm,BH = 3.5 cm :
AB^2 = AH^2 + BH^2 => em tự tính AH nhé
+ta có BH + HC = BC => HC = BC - HB = 15 - 3.5 = 11.5cm
+áp dụng dinh li pitago vào tam giac vuong AHC vuong tai H có AH ( lúc nãy tính ) và HC = 11.5cm
AC^2 =AH^2 + HC^2 => tự tính AC
b) bạn tính AB ^2 + AC^2 có = BC ^2 ko? nếu = thì tam giac ABC vuong tai A
A B C H
Kẻ \(AH\perp BC\)
Xét \(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\)\(\Rightarrow\widehat{BAH}=90^o-60^o=30^o\)
Áp dụng nhận xét: trong 1 tam giác vuông, cạnh đối diện với góc \(30^o\)bằng \(\frac{1}{2}\)cạnh huyền
Ta có: \(\Delta ABH\)vuông tại H có \(\widehat{BAH}=30^o\)
\(\Rightarrow BH=\frac{1}{2}AB=\frac{1}{2}.5=2,5\)( cm )
\(\Rightarrow CH=BC-BH=8-2,5=5,5\)( cm )
Xét \(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2=5^2-2,5^2=18,75\)
Xét \(\Delta ACH\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)
\(\Rightarrow AC^2=18,75+5,5^2=18,75+30,25=49\)
\(\Rightarrow AC=7cm\)
Vậy \(AC=7cm\)