K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

:)

a: ΔAHB vuông tại H 

mà HN là đường cao

nên AN*AB=AH^2

ΔAHC vuông tại H

mà HM là đường cao

nên AM*AC=AH^2

=>AN*AB=AM*AC

=>AN/AC=AM/AB

=>ΔANM đồng dạng với ΔACB

b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)

\(CH=\sqrt{13^2-12^2}=5\left(cm\right)\)

=>BC=14cm

8 tháng 5 2018

Tam giác AHN đồng dạng với tam giác ACH ( tự chứng minh )

\(\Rightarrow\frac{AH}{AC}=\frac{AN}{AH}\Rightarrow AH^2=AN.AC\left(1\right)\)

 tam giác AHB đồng dạng với tam giác AMH ( Tự chứng minh )

\(\Rightarrow\frac{AH}{AM}=\frac{AB}{AH}\Rightarrow AH^2=AB.AM\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra AB.AM = AN.AC

\(\Rightarrow\frac{AC}{AB}=\frac{AM}{AN}\)

Xét tam giác AMN và tam giác ACB có:

\(\widehat{MAN}\)chung 

\(\frac{AM}{AN}=\frac{AC}{AB}\left(cmt\right)\)

Suy ra tam giác AMN đồng dạng với tam giác ACB ( c-g-c )

b) Áp dụng định lý PITAGO tính ra BH và CH 

rồi tiếp tục tính tiếp BC 

8 tháng 5 2018

- bạn ơi

- Chứng minh ngay luôn hộ mình để mình còn gửi bài cho cô nè. mình không có time đâu bạn

3 tháng 8 2017

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

=

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

QM

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

tóm lị là ABGHMN là sai 

3 tháng 8 2017

Vậy tóm lại là sao, mk hk hỉu

17 tháng 9 2019

a) Ta có: M là trung điểm AB

           N là trung điểm BC

=> MN là đường trung bình của \(\Delta ABC\)

=> MN \\ AC .Nên MN\(\perp AB\) (đpcm)

b) Áp dụng định lý Pytago ,ta có :

AB2 + AC2 = BC2

 AC2 = 132 - 122

=> AC = 5 cm

Lại có: MN =\(\frac{1}{2}AC\)(T/c đtb)

=> MN = \(\frac{1}{2}5\)= 2.5 cm

a: Xét ΔABC có \(AB^2+AC^2=BC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A và ΔMDC vuông tại M có

\(\widehat{MCD}\) chung

Do đó: ΔABC~ΔMDC
b: Ta có: M là trung điểm của BC

=>\(MB=MC=\dfrac{BC}{2}=15\left(cm\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot15\cdot20=150\left(cm^2\right)\)

Ta có; ΔABC~ΔMDC
=>\(\dfrac{AB}{MD}=\dfrac{BC}{DC}=\dfrac{AC}{MC}\)

=>\(\dfrac{18}{MD}=\dfrac{30}{DC}=\dfrac{24}{15}=\dfrac{8}{5}\)

=>\(MD=18\cdot\dfrac{5}{8}=\dfrac{90}{8}=\dfrac{45}{4}\left(cm\right);DC=30\cdot\dfrac{5}{8}=\dfrac{150}{8}=\dfrac{75}{4}\left(cm\right)\)

c: Xét ΔBME vuông tại M và ΔBAC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔBME~ΔBAC

=>\(\dfrac{BE}{BC}=\dfrac{BM}{BA}\)

=>\(\dfrac{BE}{30}=\dfrac{15}{18}=\dfrac{5}{6}\)

=>BE=25(cm)

Ta có: BE=BA+AE

=>AE+18=25

=>AE=7(cm)

ΔCAE vuông tại A

=>\(CA^2+AE^2=CE^2\)

=>\(CE^2=7^2+24^2=625\)

=>\(CE=\sqrt{625}=25\left(cm\right)\)