Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB = 18; BC = 21; CA =12 (gt)
=> chu vi tg ABC là : 18 + 12 + 21 = 51
tam giác ABC ~ tam giác A'B'C' (gt)
=> AB/A'B' = AC/A'C' = BC/B'C' = C ABC/C A'B'C
=> AB/A'B' = AC/C'A' = BC/B'C' = 3/4
xong tự tính ra
a, 2 tam giác đồng dạng
CM:
xét tam giác ta có: \(2x+3x+4x=56\)(\(x\)là hệ số sao cho \(2x;3x;4x\)là ba cạnh của tam giác ABC)
=) \(x=6\)
tỉ lệ cạnh thì cậu chứng minh đc 2 tam giác đồng dạng nhé
b,vì hai tam đồng dạng nên
\(\widehat{ABC}=\widehat{DEF}=45^O\)
\(\widehat{BAC}=\widehat{EDF}=105^O\)
tổng 3 góc trong tam giác =180o
thì tính đc \(\widehat{ACB}=\widehat{DFE}=30^O\)
sao khi ra x=6 nhân vào 2x=2.6=12=AB
3x=3.6=18=AC
BC=4x=4.6=24
tỉ lệ cạnh \(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}\)
hay \(\frac{12}{3}=\frac{18}{4,5}=\frac{24}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)
Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm