Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có MN//BC nên \(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)(định lý Thales)
\(\frac{AM}{AB}=\frac{AN}{AC}\Rightarrow\frac{5}{15}=\frac{AN}{12}\Rightarrow AN=\frac{5.12}{15}=4\)
\(\frac{AM}{AB}=\frac{MN}{BC}\Rightarrow\frac{5}{15}=\frac{MN}{20}\Rightarrow MN=\frac{5.20}{15}=\frac{20}{3}\)
Dễ thấy MNPB là hình bình hành nên \(MN=BP=\frac{20}{3}\)
Vậy \(AN=4\);\(MN=BP=\frac{20}{3}\)
Xét \(\Delta ABC:MN//BC\left(gt\right).\)
\(\Rightarrow\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(Talet\right).\\ \Rightarrow\dfrac{5}{8}=\dfrac{AN}{10}.\\ \Rightarrow AN=6,25\left(cm\right).\)
ta có MN song song BC
áp dụng định lí Ta Lét ta có
AM/AB=AN/AC<=>AN=(AM.AC)/AB=(6.15)/9=10 cm
BM=AB-AM=12-3=9
ta có
BA vuông góc AC
BA vuông góc MN
=>AC//MN
áp dụng hệ quả của te-lét ta đc
BM/BA=MN/AC
=>9/12=15/AC
=>15.12/9=AC
=>AC=180/9=20
a) Do MN//BC nên theo hệ quả của ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)
\(\Rightarrow\) \(\dfrac{2}{4}\) = \(\dfrac{MN}{6}\)\(\Rightarrow\) MN = \(\dfrac{2\times6}{4}\)\(\Rightarrow\) MN = 3 cm
b) Do MN//BC nên theo ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AC}\)
\(\Rightarrow\)\(\dfrac{12}{15}\)=\(\dfrac{AN}{18}\)\(\Rightarrow\) AN = \(\dfrac{12\times18}{15}\) = 14,4 cm
Xét ΔABC có MN//BC
nên AM/AB=AN/AC
=>AN/4=3/5
=>AN=2,4cm
Ta có: Tam giác AMN đồng dạng với tam giác ACB nên =>MN/CB=AM/AC=10/15=2/3.=>MN=2/3*18=12