K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2022

\(a^2=b^2+c^2-2bc.\cos A\Rightarrow a=\sqrt{b^2+c^2-2bc.cosA}=\sqrt{7^2+5^2-\dfrac{2.7.5.3}{5}}=4\sqrt{2}\)

\(\sin A=\sqrt{1-cos^2A}=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)

\(p=\dfrac{a+b+c}{2}=6+2\sqrt{2}\)

\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=14\)

\(R=\dfrac{a}{2.sinA}=\dfrac{4\sqrt{2}}{\dfrac{2.4}{5}}=\dfrac{5\sqrt{2}}{2}\)

\(r=\dfrac{S}{p}=\dfrac{14}{6+2\sqrt{2}}=3-\sqrt{2}\)

\(ha=\dfrac{2S}{a}=\dfrac{2.14}{4\sqrt{2}}=2\sqrt{2}\)

\(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\)

\(\Leftrightarrow7^2+5^2-a^2=\dfrac{3}{5}\cdot2\cdot7\cdot5=3\cdot2\cdot7=42\)

\(\Leftrightarrow a^2=32\)

hay \(a=4\sqrt{2}\)

\(\sin A=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Diện tích \({S_1}\) của tam giác IAB là: \({S_1} = \frac{1}{2}r.AB = \frac{1}{2}r.c\)

Diện tích \({S_2}\) của tam giác IAC là: \({S_2} = \frac{1}{2}r.AC = \frac{1}{2}r.b\)

Diện tích \({S_3}\) của tam giác IBC là: \({S_3} = \frac{1}{2}r.BC = \frac{1}{2}r.a\)

b) Diện tích S của tam giác ABC là:

 \(\begin{array}{l}S = {S_1} + {S_2} + {S_3} = \frac{1}{2}r.c + \frac{1}{2}r.b + \frac{1}{2}r.a = \frac{1}{2}r.(c + b + a)\\ \Leftrightarrow S = \frac{{r(a + b + c)}}{2}\end{array}\)

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
29 tháng 9 2023

\(\widehat{B}=180^o-60^o-45^o=75^o\)

Theo định lý sin ta có:

\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\)

\(\Rightarrow AC=\dfrac{AB\cdot sinB}{sinC}=\dfrac{5\cdot sin75^o}{sin45^o}=\dfrac{5+5\sqrt{3}}{2}\) 

Mà: \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}\cdot5\cdot\dfrac{5+5\sqrt{3}}{2}\cdot sin60^o=\dfrac{75+25\sqrt{3}}{8}\left(dvdt\right)\)

29 tháng 9 2023

AB=R hả bạn

 

24 tháng 9 2023

Tham khảo:

a) Diện tích tam giác ABC là: \[S = {S_{IAB}} + {S_{IBC}} + {S_{IAC}}\]

b)

Kí hiệu: D,E, F lần lượt là hình chiếu của I trên AB, BC, AC.

Ta có:

\(\begin{array}{l}{S_{IAB}} = \frac{1}{2}.ID.AB = \frac{1}{2}r.c\\{S_{IBC}} = \frac{1}{2}IE.BC = \frac{1}{2}r.a\\{S_{IAC}} = \frac{1}{2}IF.AC = \frac{1}{2}r.b\end{array}\)

\( \Rightarrow S = \frac{1}{2}r.c + \frac{1}{2}r.a + \frac{1}{2}r.b = \frac{1}{2}r.\left( {a + b + c} \right)\)

Vậy diện tích tam giác ABC tính theo r, a, b, c là \(S = \frac{1}{2}r.\left( {a + b + c} \right)\).

Nửa chu vi tam giác ABC là:

\(P=\dfrac{a+b+c}{2}=\dfrac{12+16+20}{2}=\dfrac{2\left(6+8+10\right)}{2}=24\)(đvđd)Diện tích tam giác ABC là:

\(S=\sqrt{P\cdot\left(P-a\right)\left(P-b\right)\left(P-c\right)}\)

\(=\sqrt{24\cdot\left(24-12\right)\left(24-16\right)\left(24-20\right)}\)

\(=\sqrt{24\cdot12\cdot8\cdot4}\)

\(=2\sqrt{6}\cdot2\sqrt{3}\cdot2\sqrt{2}\cdot2\) 

\(=16\sqrt{36}=96\)(đvdt)

3 tháng 3 2021

Còn 3 cái còn lại giải giúp mik đi

5 tháng 5 2019

Nhận xét: Tam giác ABC có a2 + b2 = c2 nên vuông tại C.

Giải bài 10 trang 62 sgk Hình học 10 | Để học tốt Toán 10

+ Diện tích tam giác: S = 1/2.a.b = 1/2.12.16 = 96 (đvdt)

+ Chiều cao ha: ha = AC = b = 16.

+ Tâm đường tròn ngoại tiếp tam giác là trung điểm của AB.

Bán kính đường tròn ngoại tiếp R = AB /2 = c/2 = 10.

+ Bán kính đường tròn nội tiếp tam giác: S = p.r ⇒ r = S/p.

Mà S = 96, p = (a + b + c) / 2 = 24 ⇒ r = 4.

+ Đường trung tuyến ma:

ma2 = (2.(b2 + c2) – a2) / 4 = 292 ⇒ ma = √292.