Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHB (H=90*) va tam giác AHD (H=90*) co:
HB=HD ( gt)
AH chung
=> tam giác AHB=tam giác AHD
hok ngu toan mấy câu còn lại không biết làm
a)Xét ∆ vuông ABH và ∆ADH có :
AH chung
BH = HD
=> ∆ABH =∆ADH (2 cạnh góc vuông)
b) Xét ∆ABD ta có :
AH \(\perp\)BC
BH = HD
=> AH là trung trực
=> ∆ABD cân tại A
=> AB = AD
ABD = ADB
AH là phân giác BAD
=> BAH = DAH
Mà ADB = EDC ( đối đỉnh)
Xét ∆ ABH có :
ABH + BHA + BAH = 180°
=> BAH = 90° - ABH (1)
Xét ∆ DEC có :
DEC + ECD + CDE = 180°
=> EDC = 90° - EDC (2)
Mà EDC = BDA (cmt)
=> EDC = BDA = ABD (3)
Từ (1) (2) (3) => BAH = ECD (dpcm)
c) Xét ∆ABC có
BAC + ACB + ABC = 180°
=> ACB = 90° - ABC
Mà ECD = ABC (cmt)
=> ECD = BCA
Hay CB là phân giác ECA
hình tự kẻ nghen:333
a) Xét tam giác AHB và tam giác AHD có
AH chung
AHB=AHD(=90 độ)
HB=HC(gt)
=> tam giác AHB=tam giác AHD( cgc)
b) vì tam giác BAH vuông tại H=> ABH+BAH= 90 độ
vì tam giác ABC vuông tại A=> ABC+BCA=90 độ
=> BAH=BAC(= 90 độ-ABC)
C B A H D E K
a,Xét t/g vuông AHD và t/g vuông AHB có :
AH chung
HD = HB (gt)
=> t/g AHD = t/g AHB ( ch-cgv )
=> AB = AD
=> t/g BAD cân tại A
b, Để CD là tia p/g của ACE
Thì sau 1 vài bước phân tích ta có
DCE^ + HAB^ = DCA^ + HBA^
Vì cần cm ACE^ = DCA^
Nên ta có thêm gt từ trên trời rơi xuống là : HAB^ = HBA^
=> HA = HB
Do gt đưa ra ko tm nên vô lí :)) làm bừa đấy ạ
c, Theo câu b ta có : ECD^ = ACD^
Xét t/g vuông CHK và t/g vuông CHA có :
CH chung
ECD^ = ACD^ ( cm câu a )
=> t/g CHK = t/g CHA ( cgv-gn )
Câu d thì chịu r :D
b)
theo câu a, ta có tam giác AHD=ACD(CH-GN)
=> AH=AK(1)
tam giác DKC vuông tại K=> DC là cạnh lớn nhất trong tam giác DCK
=> DC>KC(2)
ta có: BA=BD(gt)(3)
từ (1)(2)(3)=> AB+AC<BC+AH
bạn, mk thi hsg gặp câu này làm đc điểm tuyệt đối đó