K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2016

là 120 độ anh ạ

3 tháng 6 2016

là 120 độ nhé

17 tháng 4 2019

a) Tam giác ABC có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180\)

\(\widehat{BAC}=60\)

Suy ra \(\widehat{ABC}+\widehat{ACB}=180-60=120\)

Vì BD, CE lần lượt là phân giác \(\widehat{ABC}\)\(\widehat{ACB}\)

Nên \(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}\)=\(\frac{120}{2}=60\)

Tam giác BIC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180\)

Suy ra 60 + \(\widehat{BIC}\)=180

Suy ra \(\widehat{BIC}\)= 180-60=120

10 tháng 11 2018

Do BD là tia phân giác \(\widehat{B} \)

=> \(\widehat{B} = \widehat{EBD} + \widehat{DBC}\)

=> \(\widehat{EBD} = \widehat{DBC}\) ( hai góc tương ứng )

Do CE là tia phân giác \(\widehat{C}\)

=> \(\widehat{C} = \widehat{DCE} + \widehat{ECB}\)

=> \(\widehat{DCE} = \widehat{ECB}\) ( hai góc tương ứng)

\(\widehat{B} = \widehat{C} \) ( theo giả thiết)

=> \(\widehat{DBC} = \widehat{ECB}\)

Xét Δ BEC và Δ CDB có

BC là cạnh chung

\(\widehat{B} = \widehat{C}\) ( gt )

\(\widehat{DBC} = \widehat{ECB}\) ( cm trên )

=> Δ BEC = Δ CDB ( trường hợp g-c-g )

=> BD = CE hai cạnh tương ứng

mk lm đại th chắc sai r nhưng nếu đúng tick cho mk nha!!!hihi

4 tháng 10 2017

A B C D E 35 35 35 110 Có AD là tia phân giác góc BAC => Góc BAD = góc BAC/2=70/2=35 độ

có BE // AD => góc BAD= góc ABE = 35 độ ( so le trong )

Có góc BAC + góc BAE = 180 độ ( kề bù )

=> góc BAE = 180 độ - góc BAC = 180 - 70 = 110 độ

Có BAE + ABE + AEB = 180 độ ( tổng 3 góc tam giác AEB )

=> AEB = 180 - BAE - ABE = 180 -110-35=35 độ

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC