K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2023

Áp dụng t/c tổng 3 góc trong 1 tam giác

=> \(\widehat{C}=180-60-36=84\)

Áp dụng định lí sin:

\(\dfrac{AB}{sin84}=\dfrac{BC}{sin60}=\dfrac{AC}{sin36}\)

\(\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{sin60.AB}{sin84}\\AC=\dfrac{sin36.AB}{sin84}\end{matrix}\right.\)

\(AC+BC=\dfrac{AB\left(sin60+sin36\right)}{sin84}=\dfrac{2\left(sin60+sin36\right)}{sin84}\simeq2,9\)

12 tháng 4 2017

Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=75^o\)

* \(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\Rightarrow AB=\dfrac{BCsinC}{sinA}=a\left(1+\sqrt{3}\right)\)

* \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\Rightarrow AC=\dfrac{BCsinB}{sinA}=a\left(\dfrac{-6+3\sqrt{2}}{2}\right)\)

20 tháng 1 2022

Xét tam giác ABC:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (Tổng 3 góc trong \(\Delta\)).

Mà \(\widehat{A}=60^o;\widehat{B}=45^o\) (đề bài).

\(\Rightarrow\widehat{C}=75^o.\)

Áp dụng định lý sin:

\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}.\)

\(Thay:\) \(\dfrac{BC}{sin60^o}=\dfrac{2}{sin45^o}=\dfrac{AB}{sin75^o}.\) \(\Rightarrow\dfrac{BC}{sin60^o}=\dfrac{AB}{sin75^o}=2\sqrt{2}.\)

\(\Rightarrow\left\{{}\begin{matrix}BC=\sqrt{6}.\\AB=1+\sqrt{3}.\end{matrix}\right.\)

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
6 tháng 5 2018

c: \(AM^2=\dfrac{2\cdot\left(AB^2+AC^2\right)-BC^2}{4}=\dfrac{2\cdot\left(48^2+14^2\right)-50^2}{4}=625\)

nên AM=25(cm)

a: Xét ΔAHB vuông tại H có 

\(AB^2=AH^2+HB^2\)

nên AH=16(cm)

Xét ΔAHC vuông tại H và ΔBKC vuông tại K có 

\(\widehat{C}\) chung

Do đó: ΔAHC\(\sim\)ΔBKC

Suy ra: \(\dfrac{AH}{BK}=\dfrac{HC}{KC}=\dfrac{AC}{BC}\)

=>16/BK=20/24=5/6

=>BK=19,2(cm)

27 tháng 10 2023

a: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow cosA=\dfrac{13^2+15^2-12^2}{2\cdot13\cdot15}=\dfrac{25}{39}\)

=>\(\widehat{A}\simeq50^0\)

b: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(\dfrac{5^2+8^2-BC^2}{2\cdot5\cdot8}=cos60=\dfrac{1}{2}\)

=>\(25+64-BC^2=40\)

=>\(BC^2=49\)

=>BC=7

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng