K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

em tham khảo:

undefined

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
5 tháng 5 2019

Nhận xét: Tam giác ABC có a2 + b2 = c2 nên vuông tại C.

Giải bài 10 trang 62 sgk Hình học 10 | Để học tốt Toán 10

+ Diện tích tam giác: S = 1/2.a.b = 1/2.12.16 = 96 (đvdt)

+ Chiều cao ha: ha = AC = b = 16.

+ Tâm đường tròn ngoại tiếp tam giác là trung điểm của AB.

Bán kính đường tròn ngoại tiếp R = AB /2 = c/2 = 10.

+ Bán kính đường tròn nội tiếp tam giác: S = p.r ⇒ r = S/p.

Mà S = 96, p = (a + b + c) / 2 = 24 ⇒ r = 4.

+ Đường trung tuyến ma:

ma2 = (2.(b2 + c2) – a2) / 4 = 292 ⇒ ma = √292.

16 tháng 11 2019

Áp dụng định lí Cosin, ta có  B C 2 = A B 2 + A C 2 − 2 A B . A C . cos B A C ^

= 3 2 + 6 2 − 2.3.6. c o s 60 0 = 27 ⇔ B C 2 = 27 ⇔ B C 2 + A B 2 = A C 2 .

Suy ra tam giác ABC vuông tại B,  do đó bán kính R = A C 2 = 3.  

Chọn A.

14 tháng 12 2022
A
NV
30 tháng 1 2022

Do tam giác ABC đều nên tâm đường tròn ngoại tiếp O trùng trọng tâm

Gọi AM là trung tuyến (kiêm đường cao), theo tính chất trọng tâm:

\(AM=\dfrac{3}{2}AO=\dfrac{3}{2}R=12\)

\(AM=\dfrac{AB\sqrt{3}}{2}\Rightarrow AB=8\sqrt{3}\)

\(S=\dfrac{1}{2}AM.AB=48\sqrt{3}\)

30 tháng 1 2022

Tam giác ABC đều.

\(\Rightarrow AB=AC=BC\) (Tính chất tam giác đều).

Áp dụng định lý sin vào tam giác ABC đều, ta có:

\(\dfrac{a}{\sin A}=2R.\Rightarrow\dfrac{BC}{\sin60}=2.8.\Leftrightarrow BC=16.\dfrac{\sqrt{3}}{2}=8\sqrt{3}\) (đvđd).

\(\Rightarrow BC^2=192\) (đvđd).

Ta có: \(S=\dfrac{1}{2}ac.\sin B.\)

\(\Rightarrow S=\dfrac{1}{2}BC.AB.\sin60^o=\dfrac{1}{2}.BC^2.\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{3}}{4}.192=48\sqrt{3}\) (đvdt).

30 tháng 3 2017

Giải bài 10 trang 62 sgk Hình học 10 | Để học tốt Toán 10

Chọn B