Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
Dễ thôi, ta có:
Kẻ đường cao BH ta được: \(BC^2=BH^2+HC^2\)
\(\Leftrightarrow a^2=\left(AB^2-AH^2\right)+\left(AC-AH\right)^2\)
\(=c^2-AH^2+b^2-2\cdot b\cdot AH+AH^2\)
\(=b^2+c^2-2\cdot AH\cdot b\)
\(=b^2+c^2-2ab\cdot\cos A\)
a}\(\frac{AC^2}{AB^2}=\frac{DC.BC}{BD.BC}=\frac{DC}{BD}\Rightarrow\frac{AC^4}{AB^4}=\frac{DC^2}{BD^2}=\frac{CF.AC}{BE.AB}\Rightarrow\frac{AC^3}{AB^3}=\frac{CF}{BE}\)
b}tứ giác AFDE là hình chữ nhật
=>AH=EF
=>AH2=EF2=ED2+FD2
3AH2+BE2+CF2=2AH2+BE2+CF2+ED2+FD2=2AH2+BD2+DC2=AH2+BD2+AH2+DC2=AB2+AC2=BC2
theo dinh ly pita go
Bạn tham khảo tại đây:
Câu hỏi của Nguyễn Thị Mỹ Lệ - Toán lớp 9 | Học trực tuyến
Vẽ đường cao BH⊥AC(H∈AC)
Trong △ BHC vuông tại H có BC2=BH2+CH2=BH2+(AC-AH)2=BH2+AC2-2AC.AH+AH2
Trong △ ABH vuông tại B có AH2+BH2=AB2 và AH=AB.cosA hay AH=c.cosA
Suy ra BC2=AC2+AB2-2AC.c.cosA hay a2=b2+c2-2bc.cosA
D A C B b c a b/2
Ta có: \(\widehat{CAB}=120^o\Rightarrow\widehat{CAD}=60^o\)
\(\Rightarrow\Delta DAC\) là nửa tam giác đều.
\(\Rightarrow AD=\frac{AC}{2}=\frac{b}{2}\)
Xét \(\Delta CDB\) vuông tại D có:
\(CB^2=CD^2+DB^2=\left(AC^2-AD^2\right)+\left(AD+AB\right)^2\)
\(\Leftrightarrow CB^2=AC^2-AD^2+AD^2+2AD.AB+AB^2=AC^2+2AB.\frac{AC}{2}+AB^2\)
\(\Leftrightarrow a^2=b^2+c^2+bc\)